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Summary 

In this work the basic aspects of microarray data normalization are presented. Due to high 
level of complexity of microarray experiments their results are usually distorted. The normaliza-
tion process allows to eliminate bias and to make comparison between distinct microarrays reli-
able. The main types of normalization of two-color microarray data are reviewed and presented 
using R and Bioconductor tools. 
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1. The aim of normalization 

The analysis of microarray experiment provides a lot of information  
regarding genome, its structure and functioning. Spotted cDNA or oligonucleo-
tide microarrays are widely used to learn which genes are expressed in the cells 
and tissues and what is the level of their expression. Unfortunately, the data 
obtained in such experiments are usually loaded with many biological and tech-
nical errors which disguise the results to some extend. Normalization is a pro-
cess that enables to remove these errors in order to make the comparison between 
the different microarrays reasonable. Systematic biases accompanying technical 
replications can be sourced from the dye effect (efficiency of various dye incor-
poration into a sample and different sensitivity of dyes, for example, red dye is 
more sensitive than green), the scanner effect (different scanner settings during 
individual experiments do not provide the same results), and the printer effect 
(different pins used simultaneously for spotting a microarray). 

2. The types of normalization 

The simplest possible microarray experiment is one with a series of repli-
cate two-color arrays, all comparing two RNA samples obtained from the same 
organism, e.g. coming from homogenous cancer tissue and control one. Simple 
way to modify the above experiment would be to swap the dyes for at least one 
set of the arrays. Such an operation is called dye-swap. In the first experiment, 
the cancer sample is labeled with a red dye and the control sample with a green 
dye, and in the second experiment vice-versa (the cancer sample is labeled with 
a green dye and the control sample with a red dye). The aim of this approach is 
to eliminate the dye effect.  

Another important question one needs to ask is which genes should be used 
for normalization. Yang et al. (2001) suggests three approaches. First one uses 
all genes on the microarray. This global method assumes that the majority of the 
genes represented on the microarray have a constant level of expression or that 
there is symmetry in the number of up- and down-regulated genes. However, 
such an assumption is not true for small dedicated microarrays. Here, instead of 
using all genes we can use a smaller subset of the so-called housekeeping genes, 
which are characterized by a stable expression regardless of the conditions of 
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the experiment. However, these genes tend to be highly expressed, and they 
cannot be considered a representative population in relation to all other genes. 
The best choice is to use so called spiking controls -control probes and exoge-
nous RNA complementary to these probes, added to the both samples (control 
and investigated one in the same amount) before labelling. Therefore, they are 
expected to give equal intensities in both channels. Usually the probes specific 
for spike genes are spotted on a microarray in a number of replications. Conse-
quently, the observed differences in the intensity of spike genes within and be-
tween arrays come from bias introduced by hybrydization and printing pro-
cesses. 

Another problem to solve is to ascertain whether the received data should 
be normalized within or between arrays (if diagnostic plots suggest a difference 
in scale between the arrays), or both, what is the most frequent case. In the at-
tempt to answer this question, an important step is to analyse the variation of 
raw data points for each subgrid and for each microarray separately. Many use-
ful tools to assess the quality of array data are available in Bioconductor, e.g. 
scatter plots, MA plots, boxplots, spatial plots, plotDensities. Interpretation of 
these graphs helps researchers to make decision which methods of normaliza-
tion should be chosen to obtain optimal results. Within-array normalization is 
carried out for each array separately and it is applied when in the MAplot graph 
( M  is the difference in red and green fluorophores intensity and A  is the 
arithmetic mean of the logarithms of red and green fluorophores intensity) a 
large dispersion of the results for each individual subgrid is observed. Changes 
in genes expression are interpreted as follows: 

• 0=M  in the absence of any changes in the expression level of genes 
labeled in red and green dye, 

• 1=M  means that the genes highlighted in red are overexpressed twice 
comparing to genes marked in green, 

• 1−=M means that the genes highlighted in green are twice as overex-
pressed as genes marked in red, 

• 2=M  is a 4 - fold change, etc.  
Regardless of the print-tip effect, the relationship between the intensity ratios 

and spot positions on a microarray is often noted. These disparities may be caused 
by hybridization effect. In this case the special kind of normalization (location nor-
malization) is recommended. It is also a type of global normalization, based on as-
sumption that the intensity of green and red color is linked with a permanent factor 
k  which fulfills the relationship kGR =  and )/(log)/(log 22 kGRcGR =− , 
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where R  and G  are the intensities of the red and green channels respectively. 
Parameter c  ( kc 2log= , the local) is often the median or the average value for 
a particular set of data.  

Frequently observed dye effect depends on the intensity of a single probe. 
Before choosing the method of normalization the linearity of data should be 
checked. If the data are linear, median centering method can be used – the me-
dian of the log ratios for one microarray is calculated and subsequently this 
median is subtracted from the log ratio of every gene. If the data are non-linear 
we can use lowess or another local method. Two methods can be distinguished: 
loess and lowess, represented by separate functions. If a linear function is used 
for the local regression then we call this method lowess. If a quadratic function 
is used it means we use loess. The lowess fit is calculated at each data point in 
the data set. At each point, a local polynomial is fit to a local region of the data 
using a linear least squares regression. It is worth of attention that using loess 
function one can specify the model and using lowess, one needs to provide only 
vectors with the coordinates of the points in the scatter plot. In the print - tip 
loess method M  is normalized by subtracting from it the corresponding value 
determined by the loess curve for the grid. This method is described by Yang 
(2001). Scaling methods depend on the choice of a base array, which deter-
mines the average intensity of all arrays.  

3. Normalization with R software 

Software described in this publication is based on the free statistical pro-
gramming environment R available from the site http://www.bioconductor.org. 
Bioconductor is an open source project developed and still developing for ge-
nomic data analysis. The Bioconductor packages such as limma, marray, vsn, 
arrayQuality, arrayQualityMetrics were designed for quality assessment and 
normalization of two-color microarray data. Below, we present how to use 
limma (Linear Models for Microarray Data) package to normalize cDNA array 
data. Limma package offers two kinds of normalization: within-array normaliza-
tion and normalization between arrays. To call the first one can write: 

> normalizeWithinArrays(object, layout, method="printtiploess",  
  weights=object$weights, span=0.3, iterations=4, control 
  spots=NULL, df=5, robust="M", bc.method="subtract", offset=0) 
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Function normalizeWithinArrays normalizes M -values for dye-
bias within each array. There are different methods here to use: median, print-
tiploess, composite, control and robustspline.  

Median method computes the differences between M -values for each ar-
ray and the weighted median. The loess methods such as: loess, printtiploess 
and composite were described by Yang et al. (2001, 2002). The last two me-
thods are control and robustspline methods. The first one refers to control spots 
which are the basis for matching the global loess. Next this curve is applied to 
the all spots on the array. Robustspline methods normalize the M -values for a 
single microarray using robustly fitted regression splines and empirical Bayes 
shrinkage. 

Second type of normalization is between arrays normalization. These 
methods normalize microarray data in such a way that log-ratios or intensities 
across a series of arrays are comparable. Here the following function can be 
used: 
> normalizeBetweenArrays(object, method="Aquantile", 
  targets=NULL,...) 

There are different methods available for this function: scale, quantile,  
Aquantile, Gquantile, Rquantile, Tquantile or vsn.  

Quantile method ensures that the corresponding intensities across arrays 
and across channels have the same distribution. Other methods (Aquantile, 
Gquantile, Rquantile) ensure that the green channel and the red channel have 
the same empirical distribution of A -values (average intensities) across arrays 
and M -values are unchanged. Otherwise, it is the case for the last method, 
which uses a vsn function and row data as an input. This normalization method 
includes background correction, then log-transformation and finally normaliza-
tion. One can find this function in vsn package. An input data should have the 
following format: for the two-color microarray, each row corresponding to one 
spot, and the columns to the different arrays and wave-lengths (usually red and 
green). This kind of normalization is particularly useful for single-channel (one-
color) arrays. For example, when one has 3 two-color arrays, the data file would 
have 6 columns (1-3 contain intensities for green channel, and 4-6 for the red 
one). For one-color arrays each row corresponds to a probe, and each column to 
an array. 

For more details of remaining arguments call the function: > help(limma). 
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4. An example of normalization of data using R 

In this work we used the ApoAI data (Callow et al., 2000) to illustrate the 
results of normalization process in Bioconductor. The experiment compared 8 
knock-out mice (with excluded ApoAI (apolipoprotein) gene with 8 control 
mice. Target mRNA was isolated from mice liver. RNA from each knock-out 
mouse was labeled with Cy5 dye and hybridized separately. The reference 
RNA, obtained by pooling of RNA extracted from 8 control mice, was labeled 
with Cy3 dye and co-hybridized with each array.  

Data input is the first step of analysis. Let’s assume that our data are in the 
current working directory. The following commands can be used to read the 
data, target and spot files. 

> TargetsSpot <-readTargets("ApoAITargets.txt") 
> RGspot <-read.maimages(TargetsSpot$FileName, 
  source="spot")  
> MAspot <-MA.RG(RGspot)  
> RGspot$genes <-readGAL()  
> MAspot <-normalizeWithinArrays(RGspot) 
The last function changes RG data format into MA data format, necessary 

to more far analyses. To compare the distributions of data for each array and 
each array subgrids, the following functions can be used to draw a graph for 
arrays and subgrids and store it in a “png” file. 

> plotMA3by2(MAspot, prefix="MA", path=NULL,  
  main=colnames(MA),zero.weights=FALSE, 
  comon.lim=TRUE, device="png") 
> plotPrintTipLoess(MA0, array=1,span=0.4,  
  main="c1") 

MA plots presented below (Fig. 1 and 2) show the distribution of the raw 
data for the first, fourth and eighth array. Every array is divided into 16 subar-
rays. The non-linear data evidently need the normalization. There is a substan-
tial discrepancy between microarrays, (Fig. 2), what should be taken into ac-
count later, after within-array normalization. 

Within-array normalization is ordered by the following function: 
 

> MAprintTip <- normalizeWithinArrays 
  (RG,method="printtiploess") 
>  MA0 <- normalizeWithinArrays(RGspot, 
  method="none") # Method "none" computes M-values and A-values  
    but does no normalization 
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Fig. 1. MAplots for each subgrid of microarray 1, 4, 8 – data before normalization 

 

 
 

Fig. 2. MAplots for 1, 4, 8 microarray – data before normalization 



IDZI SIATKOWSKI, JOANNA ZYPRYCH, LUIZA HANDSCHUH, MAREK FIGLEROWICZ 16 

After the printtiploess normalization of microarrays we obtain satisfying results. 
Arrays 1, 4 and 8 (Fig. 3) show significant differences when comparing the 
distribution of data before and after normalization.  
 

 
Fig. 3. MAplots for 1, 4, 8 microarray after normalization 

 

Different types of normalization can be performed using the following func-
tions: 

> MA2 <- normalizeBetweenArrays(MAprintTip, method  
  = "scale") # data will be normalized between arrays after within  
    arrays normalization 
> MA3 <- normalizeBetweenArrays(MA0, method =  
  "scale") # normalization of the raw data between arrays  

 
Normalization results obtained with different methods can be easily compared 
using boxplots. Within-array normalization can be omitted when the boxplots 
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are roughly at the same height. Fig. 4 and code below present the comparison 
between varying normalization pathways. 

> boxplot(data.frame(MA0$M),col="bisque",main =  
  "raw data", ylab = "M value", las=2) 
> boxplot(data.frame(MA3$M),col="gold", main =  
  "normalizeBetweenArrays_raw_data", ylab =  
  "M value",las=2 ) 
> boxplot(data.frame(MAprintTip$M),col="red",main =  
  "normalizeWithinArrays_printTip", ylab =  
  "M value",las=2 )  
> boxplot(data.frame(MA2$M),col="blue", main =  
  "normalizeBetweenArrays_scale data", ylab =  
  "M value",las=2 )  
The first graph shows the raw data needed to be normalized between the ar-

rays. The different slides vary with scales. The next one represents the data 
after normalization between arrays – scale normalization. The following one 
shows the effects of within-array normalization. The last is a result of normali-
zation within-arrays and subsequent between array normalization with the sca-
ling method. Comparing these charts one can see that the normalization be-
tween microarrays preceded by within -arrays normalization gives better results 
than applying only normalization between microarrays.  

 

 
Fig. 4. Boxplots for all microarrays after applying of various normalization methods 
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5. Conclusion 

Normalization is a very important step in the pre–processing of two-color 
microarray data. It has a large impact on the identification of differentially ex-
pressed genes. Normalization is required to ensure that the observed differences 
in fluorescence intensities indeed reflect differential gene expression, not the 
printing, hybridization and scanning artifacts. Microarray normalization meth-
ods will be probably further developed, however, the existing ones, e.g. print-tip 
loess normalization, give quite good results using a wide variety of arrays. It is 
important to visualize the raw data with diagnostic plots before choosing the 
method of normalization. When the bias in the distribution of data for separate 
microarrays is observed the normalization within-array should be applied. 
When the disparities still remain, further normalization steps such as scale-
normalization between the arrays must be undertaken. 
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METODY NORMALIZACJI W ANALIZIE DWUKOLOROWYCH 
MIKROMACIERZY 

Streszczenie 

W pracy zaprezentowano metody normalizacji danych pochodzących z dwukolorowych mi-
kromacierzy. Omówiono typy normalizacji oraz moŜliwości obliczeniowe w ramach Bioconducto-
ra. Przedstawiono takŜe funkcje wykorzystywane w analizowanych przykładach. 

Słowa kluczowe: mikromacierze cDNA, analiza statystyczna, normalizacja, R, bioconductor 
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