Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 17 | 1 |

Tytuł artykułu

The splenocyte proliferative response and cytokine secretion in mice after 28-day oral administration of silver nanocolloid


Treść / Zawartość

Warianty tytułu

Języki publikacji



An increasing number of applications of silver nanoparticles in industry, medicine and everyday life means that the risk of exposure of the human organism to their potential harmful influence is growing. This study has sought to assess the effect of 28-day alimentary administration of different concentrations (0.25, 2.5 and 25 ppm) of a commercial silver nanocolloid on the proliferative activity and synthesis of cytokines by mouse splenocytes. All of the analyzed doses of the colloid had a significant, albeit different, effect on the activity of splenocytes. At the lowest dose, a significant decrease in the proliferation of T cells and more intensive synthesis of pro-inflammatory cytokines, both by non-stimulated and LPS-stimulated cells, was observed. The intermediate dose, on the other hand, stimulated proliferation of B cells while producing a pro-inflammatory effect regarding the synthesis of cytokines. Finally, the highest dose decreased the synthesis of cytokines by non-stimulated cells, but after LPS stimulation, through the strong activation of the IL-10 synthesis, it raised the proliferation of B cells and decreased the synthesis of pro-inflammatory cytokines. The results suggest that silver nanoparticles administered orally have an easy access to the peripheral organs of the immune system, such as the spleen, but the effect of long-term exposure of this organ to the effect of silver nanocolloid depends on several factors, including the dose of nanoparticles, and seems as difficult to predict.

Słowa kluczowe








Opis fizyczny



  • Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland


  • Benard G, Romano CC, Cacere CR, Juvenale M, Mendes-Giannini MJ, Duarte AJ (2001) Imbalance of IL-2, IFN-γ and IL-10 secretion in the immunosuppression associated with human paracoccidioidomycosis. Cytokine 13: 248-252.
  • Bhol KC, Schechter PJ (2005) Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis. Br J Dermatol 152: 1235-1242.
  • Dinarello CA (2000) Proinflammatory cytokines. Chest 118: 503-508.
  • Gessani S, Belardelli F (1998) IFN-γ expression in macrophages and its possible biological significance. Cytokine Growth Factor Rev 9: 117-123.
  • Greulich C, Diendorf J, Gessmann J, Simon T, Habijan T, Eggeler G, Schildhauer TA, Epple M, Koller M (2011) Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater 7: 3505-3514.
  • Jovanović B, Palić D (2012) Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish - review of current knowledge, gap identification, and call for further research. Aquat Toxicol 118-119: 141-151.
  • Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost-de Jong A, Noorlander CW, Van Eijkeren JC, Geertsma RE, De Jong WH (2010) The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31: 8350-8361.
  • Liu H, Yang D, Yang H, Zhang H, Zhang W, Fang Y, Lin Z, Tian L, Lin B, Yan J, Xi Z (2013) Comparative study of respiratory tract immune toxicity induced by three sterilization nanoparticles: silver, zinc oxide and titanium dioxide. J Hazard Mater 248-249: 478-486.
  • Małaczewska J (2011) Effect of silver nanoparticles on splenocyte activity and selected cytokine levels in the mouse serum. Bull Vet Inst Pulawy 55: 317-322.
  • Małaczewska J (2011) The effect of silver nanoparticles on splenocyte activity and selected cytokine levels in the mouse serum at early stage of experimental endotoxemia. Pol J Vet Sci 14: 597-604.
  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63.
  • Nadworny PL, Wang J, Tredget EE, Burrell RE (2008) Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine 4: 241-251.
  • Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117: 1162-1172.
  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30: 162-168.
  • Pelkonen KH, Heinonen-Tanski H, Hanninen OO (2003) Accumulation of silver from drinking water into cerebellum and musculus soleus in mice. Toxicology 186: 151-157.
  • Shin SH, Ye MK, Kim HS, Kang HS (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7: 1813-1818.
  • Takenaka S, Karg E, Moller W, Roth C, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2000) A morphologic study on the fate of ultrafine silver particles: distribution pattern of phagocytized metallic silver in vitro and in vivo. Inhal Toxicol 12: 291-299.
  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109: 547-551.
  • Viveros-Paredes JM, Puebla-Perez AM, Gutierrez-Coronado O, Sandoval-Ramirez L, Villasenor-Garcia MM (2006) Dysregulation of the Th1/Th2 cytokine profile is associated with immunosuppression induced by hypothalamic- pituitary-adrenal axis activation in mice. Int Immunopharmacol 6: 774-781.
  • Wright JB, Lam K, Buret AG, Olson ME, Burrell RE (2002) Early healing events in a porcine model of contaminated wounds: effect of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen 10: 141-151.
  • Xu Y, Tang H, Liu JH, Wang H, Liu Y (2013) Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo. Toxicol Lett 219: 42-48.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.