Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 2 |
Tytuł artykułu

Magnesium - an important component of high-energy compositions

Treść / Zawartość
Warianty tytułu
Magnez - istotny składnik mieszanin wysokoenergetycznych
Języki publikacji
Magnesium is a widely used component in high-energy compositions. Mixtures containing this metal can be found in show and military pyrotechnics, rocket propellants and various explosive masses. Magnesium containing compositions have high combustion temperature, which allows one to achieve the desired special effect. Two important stages in designing new high-energy mixtures, i.e. compatibility of substances and optimal composition, were described. The calculations were based on mixtures containing magnesium. In line with the standard STANAG 4147, using differential scanning calorimetry, compatibilities of mixtures of magnesium with octogen (HMX) and magnesium with hekzaazahekzanitroizowurzitane (CL-20) were examined. Magnesium is compatible with these nitroamines. An optimal composition which ensures the maximum combustion temperature and specific impulse was determined using the calculation programme isp2001. The optimum composition of the Mg : HMX composition burns at a lower temperature than the Mg : CL-20 mixture. The combustion temperature was 3493K for the former mixture and 3807K for the latter one. The specific impulse determined for both compositions was 273s. The specific impulse was established for mixtures with different shares of magnesium. The mixture containing in octogen reached the maximum specific impulse at 5% Mg, while the mixture containing CL-20 reached the highest specific impulse at 15% of this metal. The dependence of the specific impulse of rocket propellant containing polybutadiene with terminal hydroxyl groups (HTPB), ammonium perchlorate and magnesium was examined. The maximum value of the impulse increases with a decreasing amount of the binder. When another binder such as for poly(glycidyl azide) (GAP) was used, a reverse relationship was observed. The specific impulse increased with an increased binder content. The influence of various oxidants on the combustion temperature of pyrotechnic mixtures was defined. The highest combustion temperature was achieved for compositions with the magnesium content in the range of 20 to 45%. The effect on combustion temperature of the oxidants polytetrafluoroethylene, potassium chlorate and iron oxide was compared.
Słowa kluczowe
Opis fizyczny
  • Warsaw University of Technology, Warsaw, Poland
  • Division of High Energetic Materials, Warsaw University of Technology, Warsaw, Poland
  • Division of High Energetic Materials, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
  • Baker S.B., Worthley L.I.G. 2002. The essentials of calcium, magnesium and phosphate metabolism: Part I. Physiology. Crit. Care Resuscit., 4: 301-306.
  • Boskovic G., Negoicic D. 2009. Propellant pyrotechnic mixtures based on polytetrafluoroethylene (PTFE). Sci. Tech. Rev., 59(1): 70-76.
  • Chan M., Meyers G. 2004. Advanced thermobaric explosive compositions. United States Patent, 6,955,732 B1.
  • Chemical compatibility of ammunition components with explosives and propellants (non nuclear applications). NATO STANAG 4147MMS (Edition1). 1992.
  • Cudziło S., Szala M., Huczko A., Bystrzejewski M. 2007. Combustion reactions of poly(carbon monofluoride), (CF)n, with different reductants and characterization of the products. Propell Explos Pyrot., 32(2): 149-154.
  • Cudziło S., Trzciński W., Maranda A. 1996. Detonation behaviour of HMX-based explosives containing magnesium and polytetrafluoroethylen. Energetic Materials-Technology, Manufacturing and Processing. Federal Republic of Germany.
  • De Yong L. V., Smit K. J. 1991. A theoretical study of the combustion of magnesium/teflon/viton pyrotechnic composition. MRL Technical Report MRL-TR-91-25.
  • Flanagan J. E., Gray J. C. 1994. Patent EP 0608488.
  • Gocmez A., Yilmaz G. A., Pekel F. 1999. Development of MTV compositions as igniter for HTPB/AP based composite propellants. Propell Explos Pyrot., 24: 65-69.
  • Golofit T., Maksimowski P., Biernacki A. 2013. Optimization of potassium dinitramide preparation. Propell Explos Pyrot., 38(2): 261-265,
  • Gransden J. I., Taylor M. J. 2007. Study of confined pyrotechnic compositions for medium/large calibre gun igniter applications. Propell Explos Pyrot., 32(6): 435-446.
  • Koch E. Ch. 2002. Metal-fluorocarbon-pyrolants: III. Development and application of magnesium/teflon/viton (MTV). Propell Explos Pyrot., 27: 262-266.
  • Koch E. Ch. 2005. Metal/fluorocarbon pyrolants: VI. Combustion behaviour and radiation properties of magnesium/poly(carbon monofluoride) pyrolant. Propell Explos. Pyrot., 30: 209-215.
  • Korobkov A. M. et al. 2010. Amber light pyrotechnic composition. Patent RU2394802.
  • Książczak A., Maksimowski P., Gołofit T. 2005. Low trail and ecological rocket propellants. Probl. Tech. Uzbr., 95(2): 133-141. (in Polish)
  • Kuwahara T., Matsuo S., Shinozaki N. 1997. Combustion and sensitivity characteristics of Mg/TF pyrolants. Propell Explos Pyrot., 22: 198-202.
  • Lyadov V., Kuznetsov P. 1997. Composition for color-flame Bengal candle. Patent RU2087456 Pasternak K., Kocot J., Horecka. 2010. Biochemistry of magnesium. J. Elementol., 15(3): 601-616.
  • Singh H., Somayajulu M.R., Bhaskar Rao R. 1988. Selection of an igniter system for magnesium-based solid fuel rich. Propell Explos Pyrot., 13: 52-54.
  • Smith P. 2009. Surface-modified magnesium powders for use in pyrotechnic composition. Patent US2009025841 (A1).
  • Szydłowska A. 1957. Pyrotechnics Foundations. Wyd. MON, Warszawa. (in Polish)
  • Yueming Z. 2003. Safety fireworks. Patent CN1438467 (A).
  • Zagidullinovich A.N., Valentinovich J.V., Sergeevich R.M., Ivanovich S.A. 2012. Pyrotechnic composition for red signalling light. Patent RU2466119.
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.