PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 2 |

Tytuł artykułu

Distribution of cell envelope proteinases genes among Polish strains of Lactobacillus helveticus

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Most of the lactic acid bacteria (LAB) are able to grow in milk mainly due to the activity of a complex and well-developed proteolytic system. Cell envelope-associated proteinases (CEPs) begin casein hydrolysis and allow for releasing the peptides, enclosed in the structure of native milk proteins that are essential for growth of Lactobacillus helveticus. The biodiversity of genes encoding CEPs among L. helveticus strains can have an effect on some technological parameters such as acid production, bacterial growth rate in milk as well as liberation of biologically active peptides. The study reveals significant differences in the presence of various variants of CEPs encoding genes among ten novel Polish strains and indicates the intraspecific diversity exhibited by L. helveticus. In terms of distribution of CEPs genes, four different genetic profiles were found among the microorganisms analyzed. Furthermore, the strains exhibited also various levels of proteolytic activity. Molecular analysis revealed that prtH3 is the most abundant CEPs-encoding gene among the strains investigated. The results indicate also that ecological niche and environmental conditions might affect proteolytic properties of L. helveticus strains. The greatest variety in terms of quantity of the detected CEP encoding genes was noticed in L. helveticus 141, T105 and T104 strains. In these strains, the combination of three nucleotide gene sequences (prtH/prtH2/prtH3) was identified. Interestingly, T104 and T105 exhibited the highest proteolytic activity and also the fastest dynamic of milk acidification among the tested strains of L. helveticus.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

2

Opis fizyczny

p.203-211,fig.,ref.

Twórcy

  • Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
autor
  • Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
autor
  • Department of Biotechnology, Human Nutrition and Food Commodity Science, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland

Bibliografia

  • Broadbent J.R., H. Cai, R.L. Larsen, J.E. Hughes, D.L. Welker,V.G de Carvalho, T.A. Tompkins, Y. Ardö, F. Vogensen, A. De Lorentiis and others. 2011. Genetic diversity in proteolytic enzymes and amino acid metabolism among Lactobacillus helveticus strains. J. Dairy Sci. 94: 4313–4328.
  • Fortina M.G., G. Ricci, D. Mora, C. Parini and P.L. Manachini. 2001. Specific identification of Lactobacillus helveticus by PCRwith pepC, pepN and htrA targeted primers. FEMS Microbiol. Lett. 198: 85–89.
  • Gatti M., B. Bottari, C. Lazzi, E. Neviani and G. Mucchetti. 2014. Microbial evolution in raw-milk, long-ripend cheeses produced using undefined natural whey starters. J. Dairy Sci. 97: 573–591.
  • Genay M., L. Sadat, V. Gagnaire and S. Lortal. 2009. prtH2, not prtH, is the ubiquitous cell wall proteinase gene in Lactobacillus helveticus. FEMS Microbiol. Lett. 75: 3238–3249.
  • Griffiths M.W and A.M. Tellez. 2013. Lactobacillus helveticus: the proteolytic system, Front. Microbiol. 4:1–9.
  • Jensen M.P., F. Vogensen and Y. Ardo. 2009. Variation in caseinolytic properties of six cheese related Lactobacillus helveticus strains. Int. Dairy J. 19: 661–668.
  • Kunji E.R.S., I. Mierau, A. Hagting, B. Poolman and W.N. Konings. 1996. The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70: 187–221.
  • Lozo J., I. Strahinic, M. Dalgalarrondo, J.M. Chobert, T. Haertle and L. Topisirovic. 2011. Comparative analysis of β-casein proteolysis by PrtP proteinase from L. paracasei subsp. paracasei BGHN14, PrtR proteinase from Lactobacillus rhamnosus BGT10 and PrtH proteinase from Lactobacillus helveticus BGRA43. Int. Dairy J. 21: 863–868.
  • Miyamoto M., H.M. Ueno, M. Watanabe, Y. Tatsuma, Y. Seto,T. Miyamoto and H. Nakajima. 2015. Distinctive proteolytic activity of cell envelope proteinase of Lactobacillus helveticus isolated from airag, a traditional Mongolian fermented mare’s milk. Int. J. Food Microbiol. 197: 65–71.
  • Nejati F., M. Babaei and A. Taghi-Zadeh. 2016. Characterisation of Lactobacillus helveticus strains isolated from home-made dairy products in Iran, International J. Dairy Technol. 69: 89–95.
  • Nielsen M.S, T. Martinussen, B. Flambard, K.I. Sorensen andJ. Otte. 2009. Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: effect of bacterial strain, fermentation pH, and storage time. Int. Dairy J. 19: 155–165.
  • Oberg C.J., J.R. Broadbent, M. Strickland and D.J. McMahon. 2002. Diversity in specificity of the extracellular proteinases in Lactobacillus helveticus and Lactobacillus delbrueckii subsp. bulgaricus. Lett. Appl. Microbiol. 34: 455–460.
  • Oommen B.S., D.J. McMahon, C.J. Oberg, J.R. Broadbent andM. Strickland. 2002. Proteolytic specificity of Lactobcillus delbrueckii subsp. bulgaricus influences functional properties of mozzarella cheese. J. Dairy Sci. 85: 2750–2758.
  • Ravyts F., L. De Vuyst and F. Leroy. 2012. Bacterial diversity and functionalities in food fermentations. Eng. Life Sci. 12: 356–367.
  • Richoux R., L. Aubert, G. Roset and J.R. Kerjean. 2009. Impact of the proteolysis due to lactobacilli on the stretchability of Swiss-type cheese. Int. J. Dairy Technol. 89: 31–41.
  • Rong J., H. Zheng, M.Liu, X. Hu, T. Wang, X. Zhang, F. Jin andL. Wang. 2015. Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss. BMC Microbiology 196: 1–11.
  • Sadat-Mekmene L., J. Jardin, C. Corre, D. Mollé, R. Richoux, M.M. Delage, S. Lortal and V. Gagnaire. 2011a. Simultaneous presence of PrtH and PrtH2 proteinases in Lactobacillus helveticus strains improves breakdown of the pure αs1-Casein. Appl. Environ. Microbiol. 77: 179–186.
  • Sadat-Mekmene L., M. Genay, D. Atlan, S. Lortal and V. Gagnaire. 2011b. Original features of cell-envelope proteinases of Lactobacillus helveticus. A review. Int. J. Food Microbiol. 146: 1–13.
  • Sadat-Mekmene L., R. Richoux, L. Aubert-Frogerais, M.N. Madec, C. Corre, M. Piot, J. Jardin, S. le Feunteun, Lortal and V. Gagnaire. 2013. Lactobacillus helveticus as a tool to change proteolysis and functionality in Swiss-type cheeses. J. Dairy Sci. 96: 1455–1470.
  • Savijoki K., H. Ingmer and P. Varmanen. 2006. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 71: 394–406.
  • Savoy de Giori G. and E. M. Hébert. 2001. Methods to Determine Proteolytic Activity of Lactic Acid Bacteria, pp. 197–202. In: Spencer J.F.T. and A.L. Ragout de Spencer (eds.). Methods in Biotechnology, Food Microbiology Protocols. Humana Press Inc. Totowa, New Jersey.
  • Smeianov V.V., V.P. Wechter, J.R. Broadbent, J.E. Hughes,B.T. Rodriguez, T.K. Christensen, Y. Ardo and J.L. Steele. 2007. Comparative high-density microarray analysis of gene expression during growth of Lactobacillus helveticus in milk versus rich culture medium. Appl. Environ. Microbiol. 73: 2661–2672.
  • Soeryapranata E., J.R. Powers and G. Ünlü. 2007. Cloning and Characterization of Debittering Peptidases, PepE, PepO, PepO2, PepO3 and PepN, of Lactobacillus helveticus WSU 19. Int. Dairy J. 17: 1096–1106.
  • Wakai, T. and N. Yamamoto. 2012. Antihypertensive peptides specific to Lactobacillus helveticus fermented milk. pp. 159–172. In: Sammour R. H. (ed.) Biotechnology – Molecular Studies and Novel Applications for Improved Quality of Human Life. In Tech Europe, Rijeka, Croatia.
  • Waśko, D. Szwajgier and M. Polak-Berecka. 2014. The role of ferulic acid esterase in the growth of Lactobacillus helveticus in the presence of phenolic acids and their derivatives. Euro. Food Res. Technol. 238: 299–236.
  • Widyastuti Y., Rohmatussolihat and A. Febrisiantosa. 2014. The role of lactic acid bacteria in milk fermentation. FNS 5: 435–442.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-296325bf-40af-4628-947c-fd11bf82f670
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.