PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 6 |

Tytuł artykułu

Effect of UV-B radiation on the growth and antioxidant enzymes of Antarctic sea ice microalgae Chlamydomonas sp.ICE-L

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effect of ultraviolet-B (UV-B) radiation on Antarctic phytoplankton has become an attractive ecological issue as a result of annual springtime ozone depletion. The effects of UV-B radiation on the growth and antioxidant enzymes were investigated using Antarctic sea ice microalgae Chlamydomonas sp. ICE-L as the material in this study. The results demonstrated that UV-B radiation could notably inhibit the growth, especially at high UV-B radiation intensity (70 µW cm⁻²). Malondialdehyde and O₂˙⁻ content in ICE-L increased rapidly in early days (1–3 days) exposed to UV-B radiation enhancement, then decreased rapidly. In the stress of UV-B radiation enhancement, the superoxide dismutase, peroxidase and Catalase activities of 1–4 days in ICE-L were obviously higher than those in the control, and their activities became higher at high UV-B radiation intensity (70 µW cm⁻²). These enzymes activity of 7 days would kept stable at low UV-B radiation intensity (35 µW cm⁻²), but kept high level at high UV-B radiation intensity (70 µW cm⁻²). However, the ascorbate peroxidase activity in ICE-L kept stable under the stress of UV-B radiation enhancement. The above experimental results indicated that the antioxidant enzyme system played an important role in the adaptation of Antarctic ice microalgae under the UV-B radiation change of Antarctic ecosystems.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

6

Opis fizyczny

p.1097-1102,fig.,ref.

Twórcy

autor
  • School of the Ocean, Harbin Institute of Technology, Weihai, Shandong 264209, People's Republic of China
autor
  • School of the Ocean, Harbin Institute of Technology, Weihai, Shandong 264209, People's Republic of China
autor
  • Key Lab of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic, Administartion, Qingdao, Shandong 266061, People's Republic of China
autor
  • Key Lab of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic, Administartion, Qingdao, Shandong 266061, People's Republic of China

Bibliografia

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi: 10.1016/S0076-6879(84)05016-3
  • Azzi A, Montecucco C, Richter C (1975) The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membranes. Biochem Biophys Res Commun 65:597–603. doi:10.1016/S0006-291X(75)80188-4
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Campbell D (1998) The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction center D1 protein. Proc Natl Acad Sci USA 95:364–369. doi:10.1073/pnas.95.1.364
  • Dai Q, Yan B, Huang S et al (1997) Response of oxidative stress defense systems in rice (Oryza sativa) leaves with supplemental UV-B radiation. Physiol Plant 101:301–308. doi:10.1111/j. 1399-3054.1997.tb01000.x
  • Dawes IW (2000) Response of eukaryotic cells to oxidative stress. Agric Chem Biotechnol 43:211–217
  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase: 1. Occurrence in higher plants. Plant Physiol 59:309–314
  • Guillard RL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239
  • Heath RI, Packer I (1968) Photoperoxidation in isolated choroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–190. doi:10.1016/0003-9861(68) 90654-1
  • Hernandez E, Ferreyra GA, MacCormack WP (2002) Effect of solar radiation on two Antarctic marine bacterial strains. Polar Biol 25:453–459
  • Hughes KA, Lawley B, Newsham KK (2003) Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Appl Environ Microbiol 69:1488–1491. doi:10.1128/AEM.69.3.1488-1491.2003
  • Janknegt PJ, van de Poll WH, Visser RJW et al (2008) Oxidative stress responses in the marine Antarctic diatom Chaetoceros brevis (Bacillariophyceae) during photoacclimation. J Phycol 44:957–966. doi:10.1111/j.1529-8817.2008.00553.x
  • Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot Res 22:97–162. doi:10.1016/S0065-2296(08)60057-9
  • Liu P, Miao JL, Kan GF et al (2004) Effect of UV-B on the morphology and ultrastructure of a strain of Antarctic cyanophyceae. Mar Sci 28:21–25
  • Lizotte MP, Sullivan CW (1991) Rates of photoadaptation in sea ice diatoms from McMurdo Sound, Antarctica. J Phycol 27:367–373. doi:10.1111/j.0022-3646.1991.00367.x
  • Maehly AC (1955) Plant peroxidases [M]. In: Colowick PS, Kaplan NO (eds) Methods in enzymology. Academic, New York, pp 271–285
  • Miao JL, Jiang YH, Wang B et al (2002) Study on induced synthesis of anti-UV substances in the Antarctic alga. High Technol Lett 4:92–96
  • Miao JL, Kan GF, Jiang YH et al (2004) Responses of biochemical compositions of four Antarctic ice microalgae to UV-B irradiation enhancement. Mar Sci 28:26–31
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Norgaard MA, Andersen CB, Pettersson G et al (1998) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol B 46:5–19. doi:10.1016/S1011-1344(98)00182-1
  • Qian JG, Mopper K, Kieber DJ (2001) Photochemical production of the hydroxyl radical in Antarctic water deep-sea res. Deep Sea Res Part I Oceanogr Res Pap 48:741–759. doi:10.1016/S0967-0637(00)00068-6
  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B and ozoneinduced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136. doi:10.1104/pp.110.1.125
  • Skerratt JH, Davidson AT, Nichols PD et al (1998) Effect of UV-B on lipid content of three Antarctic marine phytoplankton. Phytochemistry 49:999–1007
  • Smith RC, Prezelin BB, Baker KS et al (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959. doi:10.1126/science.1546292
  • Staehelin J, Harris NRP, Appenzeller C et al (2001) Ozone trends: a review. Rev Geophys 39:231–290. doi:10.1029/1999RG000059
  • Wang GH, Hu CX, Li DH et al (2007) The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants. Adv Space Res 39:1034–1042. doi:10.1016/j.asr.2007.03.022
  • Zhang PY, Yu J, Tang XX (2005) UV-B radiation suppresses the growth and antioxidant systems of two marine microalgae, Platymonas subcordiformis (Wille) Hazen and Nitzschia closterium (Ehrenb.) W. Sm. J Integr Plant Biol 47:683–691

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-28f663fa-0e50-4f5b-9672-388de0203c2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.