PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 04 |

Tytuł artykułu

Cloning and characterization of MxHA7, a plasma membrane H+ - ATPase gene related to high tolerance of Malus xiaojinensis to iron deficiency

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Malus xiaojinensis, an iron-efficient apple rootstock, was used to study the molecular mechanisms of iron uptake. Increased H⁺ extrusion under iron-deficient conditions has been related with H⁺-ATPases. Thus, a 2,901-bp plasma membrane H⁺-ATPase gene, MxHA7, encoding 966 amino acids was isolated. Quantitative realtime PCR showed that MxHA7 was specifically induced in the roots of M. xiaojinensis during iron-deficient conditions, not in M. baccata. A functional complementation assay indicated that the high tolerance of MxHA7-transgenic aha7 Arabidopsis thaliana (HA7) plants to iron deficiency was significantly enhanced. Under iron-deficient conditions, Fe²⁺ contents in the roots and chlorophyll concentrations in the leaves of HA7 plants were increased up to about 2 to 3 times compared to Col-0, aha7 and empty vector (EV) (aha7 transformed with an empty vector) plants. The zinc and manganese contents in the roots of HA7 plants were also higher significantly than in aha7 and EV plants under iron-deficient conditions. Meantime, the HA7 plants have less increasing for iron uptake-related genes than those Col-0, aha7 and EV other plants after iron deficiency, which means MxHA7 gene apparently contributed to help Arabidopsis tolerance to iron deficiency.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

04

Opis fizyczny

p.955-962,fig.,ref.

Twórcy

autor
  • Institute of Horticultural Plants, China Agricultural University, Yuanmingyuan West Road No. 2, 100193 Beijing, China
autor
  • Institute of Horticultural Plants, China Agricultural University, Yuanmingyuan West Road No. 2, 100193 Beijing, China
autor
  • Institute of Horticultural Plants, China Agricultural University, Yuanmingyuan West Road No. 2, 100193 Beijing, China
autor
  • Institute of Horticultural Plants, China Agricultural University, Yuanmingyuan West Road No. 2, 100193 Beijing, China
autor
  • Institute of Horticultural Plants, China Agricultural University, Yuanmingyuan West Road No. 2, 100193 Beijing, China

Bibliografia

  • Alcántara E, Manuel D, Romera FJ (1991) Plasmalemma redox activity and H⁺ extrusion in roots of Fe-deficient cucumber plants. Plant Physiol 96:1034–1037
  • Aono M, Kubo A, Saji H, Tanaka K, Kondo N (1993) Enhanced tolerance to photo-oxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34:129–135
  • Baxter IR, Young JC, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer WA, Hazen SP, Murphy AS, Harper JF (2005) A plasma membrane H⁺-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of A. thaliana. Proc Natl Acad Sci USA 102:2649–2654
  • Briat JF, Fobis-Loisy I, Grignon N, Lobreaux S, Pascal N, Savino G, Thoiron S, Wiren NV, Wuytswinkel O (1995) Cellular and molecular aspects of iron metabolism in plants. Biol Cell 84:69–81
  • Cho HT, Cosgrove DJ (2000) Altered expression of expansion modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci 97:9783–9788
  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loophelix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412
  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the level of transcript and protein accumulation. Plant Cell 14:1347–1357
  • Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–1110
  • Gao C, Wang Y, Xiao DS, Qiu CP, Han DG, Zhang XZ, Wu T, Han ZH (2011a) Comparison of cadmium-induced iron-deficiency responses and genuine iron-deficiency responses in Malus xiaojinensis. Plant Sci 181:269–274
  • Gao CQ, Wang YC, Jiang B, Liu GF, Yu LL, Wei ZG, Yang CP (2011b) A novel vacuolar membrane H⁺-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae. Mol Biol Rep 38:957–963
  • Han ZH, Shen T, Korcak RF, Baligar VC (1994a) Screening for iron-efficient species in the genus Malus. J Plant Nutr 17:579–592
  • Han ZH, Wang Q, Shen T (1994b) Comparison of some physiological and biochemical characteristics between iron-efficient and iron-inefficient species in genus Malus. J Plant Nutr 17:1257–1264
  • Jakoby M, Wang HY, Reidt W, Weisshaar B, Bauer P (2004) FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett 577:528–534
  • Kürkcüoglu S, Degenhardt J, Lensing J, Al-Masri AN, Gau AE (2007) Identification of differentially expressed genes in Malus domestica after application of the non-pathogenic bacterium Pseudomonas fluorescens Bk3 to the phyllosphere. J Exp Bot 58:733–741
  • Lager I, Andreasson O, Dunbar TL, Andreasson E, Escobar MA, Rasmusson AG (2010) Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses. Plant Cell Environ 33:1513–1528
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408
  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9:695–713
  • Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce JL, Herrera-Estrella L (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol Biol Report 22:63–70
  • Morsomme P, Boutry M (2000) The plant plasma membrane H⁺-ATPase: structure, function and regulation. Biochimica et Biophysica Acta-Biomembranes 1465:1–16
  • Palmgren MG (1991) Regulation of plant plasma membrane H⁺-ATPase activity. Physiol Plant 83:314–323
  • Palmgren MG (2001) Plant plasma membrane H⁺-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Biol 52:817–845
  • Rabotti G, Zocchi G (1994) Plasma membrane-bound H⁺-ATPase and reductase activities in Fe-deficient cucumber roots. Physiol Plant 90:779–785
  • Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70:231–234
  • Santi S, Schmidt W (2008) Laser microdissection-assisted analysis of the functional fate of iron deficiency-induced root hairs in cucumber. J Exp Bot 59:697–704
  • Santi S, Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183:1072–1084
  • Santi S, Cesco S, Varanini Z, Pinton R (2005) Two plasma membrane H⁺-ATPase genes are differentially expressed in iron-deficient cucumber plants. Plant Physiol Biochem 43:287–292
  • Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci 8:188–193
  • Schmidt W (2006) Iron stress responses in roots of strategy I plants. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizosphere microorganisms. Kluwer Academic Publishers, Dordrecht, pp 229–250
  • Schmidt W, Michalke W, Schikora A (2003) Proton pumping by tomato roots. Effect of Fe deficiency and hormones on the activity and distribution of plasma membrane H⁺-ATPase in rhizodermal cells. Plant Cell Environ 26:361–370
  • Schwertmann U (1991) Solubility and dissolution of iron oxides. Plant Soil 130:1–25
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739
  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815
  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal-Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Peer YV, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839
  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233
  • Wang HY, Klatte M, Jakoby M, Bäumlein H, Weisshaar B, Bauer P (2007) Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta 226:897–908
  • Wu T, Zhang HT, Wang Y, Jia WS, Xu XF, Zhang XZ, Han ZH (2012) Induction of root Fe (III) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. J Exp Bot 63:859–870
  • Zhang YG, Cheng JH, Han ZH, Xu XF, Li TZ (2005) Comparison of methods for total RNA isolation from Malus xiaojinensis and cDNA amplified using LD-PCR. Biotechnol Inf 4:50–53
  • Zhao T, Ling HQ (2007) Effects of pH and nitrogen forms on expression profiles of genes involved in iron homeostasis in tomato. Plant Cell Environ 30:518–527
  • Zhao R, Dielen V, Kinet JM, Boutry M (2000) Cosuppression of a plasma membrane H⁺-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. Plant Cell 12:535–546

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-28e09c48-7cb6-44a9-a4d4-d8187d2ae991
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.