Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

Systematic identification of the key candidate genes in breast cancer stroma


Warianty tytułu

Języki publikacji



Background: Tumor microenvironment, in particular the stroma, plays an important role in breast cancer cell invasion and metastasis. Investigation of the molecular characteristics of breast cancer stroma may reveal targets for future study. Methods: The transcriptome profiles of breast cancer stroma and normal breast stroma were compared to identify differentially expressed genes (DEGs). The method was analysis of GSE26910 and GSE10797 datasets. Common DEGs were identified and then analyses of enriched pathways and hub genes were performed. Results: A total of 146 DEGs were common to GSE26910 and GSE10797. The enriched pathways were associated with “extracellular matrix (ECM) organization”, “ECM-receptor interaction” and “focal adhesion”. Network analysis identified six key genes, including JUN, FOS, ATF3, STAT1, COL1A1 and FN1. Notably, COL1A1 and FN1 were identified for the first time as cancer stromal key genes associated with breast cancer invasion and metastasis. Oncome analysis showed that the high expression levels of COL1A1 and FN1 correlated to an advanced stage of breast cancer and poor clinical outcomes. Conclusions: We found that several conserved tumor stromal genes might regulate breast cancer invasion through ECM remodeling. The clinical outcome analyses of COL1A1 and FN1 suggest these two genes are promising targets for future studies.

Słowa kluczowe






Opis fizyczny



  • he Orthopedic Department of Shanghai Hospital of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing’an District, Shanghai 200000, People’s Republic of China
  • he Orthopedic Department of Shanghai Hospital of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing’an District, Shanghai 200000, People’s Republic of China
  • Shandong Yantai Laiyang Center Hospital, 111 Changshan Road, Laiyang 265200, Shandong Province, China
  • Shandong Yantai Laiyang Center Hospital, 111 Changshan Road, Laiyang 265200, Shandong Province, China


  • 1. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.
  • 2. Kaushik S, Pickup MW, Weaver VM. From transformation to metastasis: deconstructing the extracellular matrix in breast cancer. Cancer Metastasis Rev. 2016;35(4):655–67.
  • 3. Noel A, Foidart JM. The role of stroma in breast carcinoma growth in vivo. J Mammary Gland Biol Neoplasia. 1998;3(2):215–25.
  • 4. Tuxhorn JA, McAlhany SJ, Dang TD, Ayala GE, Rowley DR. Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res. 2002;62(11):3298–307.
  • 5. Fata JE, Werb Z, Bissell MJ. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 2004;6(1):1–11.
  • 6. Bhowmick NA, Chytil A, Plieth D, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303(5659):848–51.
  • 7. Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6(7):506–20.
  • 8. Planche A, Bacac M, Provero P, et al. Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer. PLoS One. 2011;6(5):e18640.
  • 9. Casey T, Bond J, Tighe S, et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat. 2009;114(1):47–62.
  • 10. Jablonska-Trypuc A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31(sup1):177–83.
  • 11. Oskarsson T. Extracellular matrix components in breast cancer progression and metastasis. Breast. 2013;22(Suppl 2):S66–72.
  • 12. Liu H, Kato Y, Erzinger SA, et al. The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer. 2012;12:583.
  • 13. Mehner C, Hockla A, Miller E, Ran S, Radisky DC, Radisky ES. Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget. 2014;5(9):2736–49.
  • 14. Ling B, Watt K, Banerjee S, et al. A novel immunotherapy targeting MMP-14 limits hypoxia, immune suppression and metastasis in triple-negative breast cancer models. Oncotarget. 2017;8(35):58372–85.
  • 15. Pereira IT, Ramos EA, Costa ET, et al. Fibronectin affects transient MMP2 gene expression through DNA demethylation changes in non-invasive breast cancer cell lines. PLoS One. 2014;9(9):e105806.
  • 16. Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14(5):518–27.
  • 17. El-Haibi CP, Bell GW, Zhang J, et al. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci U S A. 2012;109(43):17460–5.
  • 18. Liu JL, Wei W, Tang W, et al. Silencing of lysyl oxidase gene expression by RNA interference suppresses metastasis of breast cancer. Asian Pac J Cancer Prev. 2012;13(7):3507–11.
  • 19. Schedin P, O'Brien J, Rudolph M, Stein T, Borges V. Microenvironment of the involuting mammary gland mediates mammary cancer progression. J Mammary Gland Biol Neoplasia. 2007;12(1):71–82.
  • 20. Chong HC, Tan CK, Huang RL, Tan NS. Matricellular proteins: a sticky affair with cancers. J Oncol. 2012;2012:351089.
  • 21. Stajich JE, Block D, Boulez K, et al. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002;12(10):1611–8.
  • 22. Hastie T, Tibshirani R, Narasimhan B, Chu G. Impute: Imputation for microarray data. Oral History Rev. 2011;1:128–30.
  • 23. Smyth GK. limma: Linear Models for Microarray Data. New York: Springer; 2013. p. 397–420.
  • 24. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284.
  • 25. Keshava Prasad TS, Goel R, Kandasamy K, et al. Human protein reference database--2009 update. Nucleic Acids Res. 2009;37(Database):D767–72.
  • 26. Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 2013;41(Database issue):D816–23.
  • 27. McDowall MD, Scott MS, Barton GJ. PIPs: human protein-protein interaction prediction database. Nucleic Acids Res. 2009;37(Database issue):D651–6.
  • 28. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2.
  • 29. Li QS, Meng FY, Zhao YH, Jin CL, Tian J, Yi XJ. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells. Bone Joint Res. 2017;6(8):464–71.
  • 30. Habibi I, Emamian ES, Abdi A. Quantitative analysis of intracellular communication and signaling errors in signaling networks. BMC Syst Biol. 2014;8:89.
  • 31. Vleugel MM, Greijer AE, Bos R, van der Wall E, van Diest PJ. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum Pathol. 2006;37(6):668–74.
  • 32. Crowe DL, Tsang KJ, Shemirani B. Jun N-terminal kinase 1 mediates transcriptional induction of matrix metalloproteinase 9 expression. Neoplasia. 2001;3(1):27–32.
  • 33. Chan CM, Macdonald CD, Litherland GJ, et al. Cytokine-induced MMP13 expression in human chondrocytes is dependent on activating transcription factor 3 (ATF3) regulation. J Biol Chem. 2017;292(5):1625–36.
  • 34. Gokulnath M, Partridge NC, Selvamurugan N. Runx2, a target gene for activating transcription factor-3 in human breast cancer cells. Tumour Biol. 2015;36(3):1923–31.
  • 35. Milde-Langosch K, Roder H, Andritzky B, et al. The role of the AP-1 transcription factors c-Fos, FosB, Fra-1 and Fra-2 in the invasion process of mammary carcinomas. Breast Cancer Res Treat. 2004;86(2):139–52.
  • 36. Zellmer VR, Schnepp PM, Fracci SL, Tan X, Howe EN, Zhang S. Tumor-induced stromal STAT1 accelerates breast Cancer via deregulating tissue homeostasis. Mol Cancer Res. 2017;15(5):585–97.
  • 37. Willis CM, Kluppel M. Chondroitin sulfate-E is a negative regulator of a pro-tumorigenic Wnt/beta-catenin-collagen 1 axis in breast cancer cells. PLoS One. 2014;9(8):e103966. Wang et al. Cellular & Molecular Biology Letters (2018) 23:44 Page 14 of 15
  • 38. Wang J, Du Q, Li C. Bioinformatics analysis of gene expression profiles to identify causal genes in luminal B2 breast cancer. Oncol Lett. 2017;14(6):7880–8.
  • 39. Cardozo Gizzi AM, Prucca CG, Gaveglio VL, Renner ML, Pasquare SJ, Caputto BL. The catalytic efficiency of Lipin 1beta increases by physically interacting with the proto-oncoprotein c-Fos. J Biol Chem. 2015;290(49):29578–92.
  • 40. Tewari D, Nabavi SF, Nabavi SM, et al. Targeting activator protein 1 signaling pathway by bioactive natural agents: possible therapeutic strategy for cancer prevention and intervention. Pharmacol Res. 2017;128:366–75.
  • 41. Kamide D, Yamashita T, Araki K, et al. Selective activator protein-1 inhibitor T-5224 prevents lymph node metastasis in an oral cancer model. Cancer Sci. 2016;107(5):666–73.
  • 42. Koenig A, Mueller C, Hasel C, Adler G, Menke A. Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res. 2006;66(9):4662–71.
  • 43. Shintani Y, Maeda M, Chaika N, Johnson KR, Wheelock MJ. Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-beta signaling. Am J Respir Cell Mol Biol. 2008;38(1):95–104.
  • 44. Kwon EJ, Dudani JS, Bhatia SN. Ultrasensitive tumour-penetrating nanosensors of protease activity. Nat Biomed Eng. 2017;1:0054.
  • 45. Zheng X, Mao H, Huo D, Wu W, Liu B, Jiang X. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat Biomed Eng. 2017;1(4):0057.
  • 46. Nakasone ES, Askautrud HA, Kees T, et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 2012;21(4):488–503.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.