PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 6 |

Tytuł artykułu

Overexpression of odc (ornithine decarboxylase) in Datura innoxia enhances the yield of scopolamine

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Scopolamine is widely used for its anticholinergic properties. Because of higher physiological activity and less side effects the world demand of scopolamine is estimated to be ten times greater than other anticholinergic agents, hyoscyamine and atropine. Since natural production is limited, alternatives are required to boost the production. We report the introduction of mouse odc gene of polyamine biosynthesis pathway which is also the primary pathway of tropane alkaloids in Datura innoxia. Polyamines, mainly putrescine, serve as the common metabolite for tropane alkaloids and nicotine. We have overexpressed odc gene to modulate the metabolic flux downstream and eventually achieved higher accumulation of scopolamine in transgenic plants. Among six independent transformed lines one line (O10) produced scopolamine (0.258 µg/g dry weight) almost six times higher than that produced by control plants (0.042 µg/g DW). To our knowledge, this is the first report of odc overexpression in D. innoxia leading to higher scopolamine yield.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

6

Opis fizyczny

p.2453-2459,fig.,ref.

Twórcy

autor
  • Program in gene Function and Expression, Umass Medical School, Worcester 01605, USA
autor
  • Program in gene Function and Expression, Umass Medical School, Worcester 01605, USA
autor
  • Department of Biotechnology, Hamdard University, New Delhi 110062, India
autor
  • Department of Biotechnology, Hamdard University, New Delhi 110062, India
autor
  • Department of Gnetics, Dalhi University, Sout Campus, New Delhi 110021, India
  • Department of Biotechnology, Hamdard University, New Delhi 110062, India

Bibliografia

  • Arroo R, Woolley J, Oksman-Caldentey KM (2007) Transgenic crops VI. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry, vol 61. Springer, Heidelberg, pp 189–204
  • Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of polyamine metabolism in poplar (Populus nigra × maximowiczii) cells. Plant Physiol 125:2139–2153
  • Christen PMFR, Phillipson D, Evans WC (1993) Alkaloids of Erythroxylum zambesiacum stem-bark. Phytochemistry 34:1147–1151
  • De Buck S, Podevin N,Nolf J, JacobsA, DepickerA(2009) The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. Plant J 60:134–145
  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15
  • Griffing WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53:623–637
  • Hamill JD, Robins RJ, Parr AJ, Evans DM, Furze JM, Rhodes MJC (1990) Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol Biol 15:27–38
  • Hibi N, Fujita T, Hatano M, Hashimoto T, Yamada Y (1992) Putrescine N-methyltransferase in cultured roots of Hyoscyamus albus: n-butylamine as a potent inhibitor of the transferase both in vitro and in vivo. Plant Physiol 100:820–825
  • Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31:957–973
  • Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95:7203–7208
  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamine metabolism, in vitro morphogenesis and response to salt stress. J Plant Physiol 159:983–990
  • Mayer MJ, Michael AJ (2003) Polyamine homeostasis in transgenic plants overexpressing ornithine decarboxylase includes ornithine limitation. J Biochem 134:765–772
  • Mohapatra S, Minocha R, Long S, Minocha SC (2009) Putrescine overproduction negatively impacts the oxidative state of poplar cells in culture. Plant Physiol Biochem 47:262–271
  • Moyano E, Jouhikainen K, Tammela P, Palazón J, Cusido RM, Piñol MT, Teeri TH, Oksman-Caldentey KM (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54:203–211
  • Mroczek T, Głowniak K, Kowalska J (2006) Solid-liquid extraction and cation-exchange solid-phase extraction using a mixed-mode polymeric sorbent of Datura and related alkaloids. J Chromatogr A 107:9–18
  • Nolke G, Schneider B, Agdour S, Drossard J, Fischer R, Schillberg S (2008) Modulation of polyamine biosynthesis in transformed tobacco plants by targeting ornithine decarboxylase to an atypical subcellular compartment. Open Biotechnol J 2:183–189
  • Prabhavathi VR, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282
  • Sato F, Hashimoto T, Haciya A, Tamura K, Choi KB, Murashige T, Fujimoto H, Yamada Y (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci USA 98:367–372
  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517
  • Tang W, Newton RJ, Weidner AD (2006) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot l228:1–10
  • Wink M (1999) Plant secondary metabolites from higher plants: biochemistry, function and biotechnology. In: Wink M (ed) Biochemistry of plant secondary metabolism, annual plant reviews. Sheffield Academic, Sheffield, pp 1–16
  • Zhang L, Ding RX, Chai YR, Bon WM, Moyano E, Oksman-Caldentey KM, Xu TF, Pi Y, Wang ZN, Zhang HM, Kai GY, Liao ZH, Sun XF, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101:6786–6791
  • Zhang L, Kai GY, Zhang HM, Tang KX, Jiang JH, Chen WS (2005) Metabolic engineering of tropane alkaloid biosynthesis in plants. J Integr Plant Biol 47:136–143
  • Zhang L, Yang B, Lu B, Kai G, Wang Z, Xia Y, Ding R, Zhang H, Sun X, Chen W, Tang K (2007) Tropane alkaloid production in transgenic Hyoscyamus niger hairy root cultures overexpressing putrescine N-methyltransferase is methyl jasmonate-dependent. Planta 225:887–896

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-28ca135e-8093-4787-a13b-4d074d951e54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.