PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 77 | 1 |

Tytuł artykułu

Energy - dense diet triggers changes in gut microbiota, reorganization of gut - brain vagal communication and increases body fat accumulation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Obesity is associated with consumption of energy‑dense diets and development of systemic inflammation. Gut microbiota play a role in energy harvest and inflammation and can influence the change from lean to obese phenotypes. The nucleus of the solitary tract (NTS) is a brain target for gastrointestinal signals modulating satiety and alterations in gut‑brain vagal pathway may promote overeating and obesity. Therefore, we tested the hypothesis that high‑fat diet‑induced changes in gut microbiota alter vagal gut‑brain communication associated with increased body fat accumulation. Sprague‑Dawley rats consumed a low energy‑dense rodent diet (LFD; 3.1 kcal/g) or high energy‑dense diet (HFD, 5.24 kcal/g). Minocycline was used to manipulate gut microbiota composition. 16S Sequencing was used to determine microbiota composition. Immunofluorescence against IB4 and Iba1 was used to determine NTS reorganization and microglia activation. Nodose ganglia from LFD rats were isolated and co‑cultured with different bacteria strains to determine neurotoxicity. HFD altered gut microbiota with increases in Firmicutes/Bacteriodetes ratio and in pro‑inflammatory Proteobacteria proliferation. HFD triggered reorganization of vagal afferents and microglia activation in the NTS, associated with weight gain. Minocycline‑treated HFD rats exhibited microbiota profile comparable to LFD animals. Minocycline suppressed HFD‑induced reorganization of vagal afferents and microglia activation in the NTS, and reduced body fat accumulation. Proteobacteria isolated from cecum of HFD rats were toxic to vagal afferent neurons in culture. Our findings show that diet‑induced shift in gut microbiome may disrupt vagal gut‑brain communication resulting in microglia activation and increased body fat accumulation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

77

Numer

1

Opis fizyczny

p.18-30,fig.,ref.

Twórcy

autor
  • Integrative Physiology and Neuroscience, Washington State University,Pullman, WA, USA
autor
  • Integrative Physiology and Neuroscience, Washington State University,Pullman, WA, USA
  • Psychology, Binghamton University, Binghamton, NY, USA
  • School of Molecular Biosciences, Washington State University, Pullman, WA, USA
autor
  • School of Molecular Biosciences, Washington State University, Pullman, WA, USA
autor
  • Integrative Physiology and Neuroscience, Washington State University,Pullman, WA, USA
autor
  • College of Medicine, Neural and Behavioral Sciences, Pennsylvania State University, Hershey, PA, USA
autor
  • Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
autor
  • Foods and Nutrition, University of Georgia, Athens, GA, USA
  • Foods and Nutrition, University of Georgia, Athens, GA, USA
autor
  • Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA

Bibliografia

  • Amin B, Hajhashemi V, Hosseinzadeh H (2015) Minocycline potentiates the anti‑hyperalgesic effect of ceftriaxone in CCI‑induced neuropathic pain in rats. Res Pharm Sci 10: 34–42.
  • Ballsmider LA, Vaughn AC, David M, Hajnal A, Di Lorenzo PM, Czaja K (2015) Sleeve gastrectomy and Roux‑en‑Y gastric bypass alter the gut‑brain communication. Neural Plast 2015: 601985.
  • Benani A, Hryhorczuk C, Gouaze A, Fioramonti X, Brenachot X, Guissard C, Krezymon A, Duparc T, Colom A, Nedelec E, Rigault C, Lemoine A, Gascuel J, Gerardy‑Schahn R, Valet P, Knauf C, Lorsignol A, Penicaud L (2012) Food intake adaptation to dietary fat involves PSA‑dependent rewiring of the arcuate melanocortin system in mice. J  Neurosci 32: 11970–11979.
  • Berthoud HR, Carlson NR, Powley TL (1991) Topography of efferent vagal innervation of the rat gastrointestinal tract. Am J Physiol 260: R200–R207.
  • Berthoud HR, Shin AC, Zheng H (2011) Obesity surgery and gut‑brain communication. Physiol Behav 105: 106–119.
  • Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761–1772.
  • Cani PD, Delzenne NM, Amar J, Burcelin R (2008) Role of gut microflora in the development of obesity and insulin resistance following high‑fat diet feeding. Pathol Biol (Paris) 56: 305–309.
  • Carvalho BM, Guadagnini D, Tsukumo DM, Schenka AA, Latuf‑Filho P, Vassallo J, Dias JC, Kubota LT, Carvalheira JB, Saad MJ (2012) Modulation of gut microbiota by antibiotics improves insulin signalling in high‑fat fed mice. Diabetologia 55: 2823–2834.
  • Chang HY, Mashimo H, Goyal RK (2003) Musings on the wanderer: what’s new in our understanding of vago‑vagal reflex? IV. Current concepts of vagal efferent projections to the gut. Am J Physiol Gastrointest Liver Physiol 284: G357–G366.
  • Cox AJ, West NP, Cripps AW (2015) Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 3: 207–215.
  • de Lartigue G, de La Serre CB, Raybould HE (2011) Vagal afferent neurons in high fat diet‑induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav 105: 100–105.
  • de Lartigue G, Ronveaux CC, Raybould HE (2014) Vagal plasticity the key to obesity. Mol Metab 3: 855–856.
  • de La Serre CB, de Lartigue G, Raybould HE (2015) Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiol Behav 139: 188–194.
  • de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE (2010) Propensity to high‑fat diet‑induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299: G440–G448.
  • Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, Wanke CA, Ward HD (2015) Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis 211: 19–27.
  • Dockray GJ (2003) Luminal sensing in the gut: an overview. J Physiol Pharmacol 54 Suppl 4: 9–17.
  • Duca FA, Sakar Y, Lepage P, Devime F, Langelier B, Dore J, Covasa M (2014) Replication of obesity and associated signaling pathways through transfer of microbiota from obese‑prone rats. Diabetes 63: 1624–1636.
  • Gallaher ZR, Ryu V, Herzog T, Ritter RC, Czaja K (2012) Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy. Neurosci Lett 513: 31–36.
  • Herrera AJ, Castano A, Venero JL, Cano J, Machado A (2000) The single intranigral injection of LPS as a  new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 7: 429–447.
  • Hildebrandt MA, Hoffmann C, Sherrill‑Mix SA, Keilbaugh SA, Hamady  M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD (2009) High‑fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137: 1716–1724.
  • Kashyap PC, Marcobal A, Ursell LK, Larauche  M, Duboc H, Earle KA, Sonnenburg ED, Ferreyra JA, Higginbottom SK, Million  M, Tache Y, Pasricha PJ, Knight R, Farrugia G, Sonnenburg JL (2013) Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144: 967–977.
  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77: 10–18.
  • Kumar BL, Addepalli  V (2011) Minocycline with aspirin: an approach to attenuate diabetic nephropathy in rats. Ren Fail 33: 72–78.
  • Lassenius MI, Pietilainen KH, Kaartinen K, Pussinen PJ, Syrjanen J, Forsblom C, Porsti I, Rissanen A, Kaprio J, Mustonen J, Groop PH, Lehto M (2011) Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34: 1809–1815.
  • Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, Morris MJ (2015) Changes in gut microbiota in rats fed a high fat diet correlate with obesity‑associated metabolic parameters. PLoS One 10: e0126931.
  • Lee JJ, Wang PW, Yang IH, Huang HM, Chang CS, Wu CL, Chuang JH (2015) High‑fat diet induces toll‑like receptor 4‑dependent macrophage/ microglial cell activation and retinal impairment. Invest Ophthalmol Vis Sci 56: 3041–3050.
  • Little TJ, Feinle‑Bisset C (2011) Effects of dietary fat on appetite and energy intake in health and obesity – oral and gastrointestinal sensory contributions. Physiol Behav 104: 613–620.
  • Marteau P, Pochart P, Doré J, Béra‑Maillet C, Bernalier A, Corthier G (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67(10): 4939–4942.
  • McNay DE, Briancon N, Kokoeva MV, Maratos‑Flier E, Flier JS (2012) Remodeling of the arcuate nucleus energy‑balance circuit is inhibited in obese mice. J Clin Invest 122: 142–152.
  • Membrez  M, Blancher F, Jaquet  M, Bibiloni R, Cani PD, Burcelin RG, Corthesy I, Mace K, Chou CJ (2008) Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22: 2416–2426.
  • Mikkelsen KH, Frost  M, Bahl MI, Licht TR, Jensen US, Rosenberg J, Pedersen  O, Hansen T, Rehfeld JF, Holst JJ, Vilsboll T, Knop FK (2015) Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism. PLoS One 10: e0142352.
  • Montiel‑Castro AJ, Gonzalez‑Cervantes RM, Bravo‑Ruiseco G, Pacheco‑Lopez G (2013) The microbiota‑gut‑brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci 7: 70.
  • Moreira AP, Teixeira TF, Alves RD, Peluzio MC, Costa NM, Bressan J, Mattes R, Alfenas RC (2014) Effect of a high‑fat meal containing conventional or high‑oleic peanuts on post‑prandial lipopolysaccharide concentrations in overweight/obese men. J Hum Nutr Diet 29(1): 95–104.
  • Nazemi S, Manaheji H, Noorbakhsh SM, Zaringhalam J, Sadeghi  M, Mohammad‑Zadeh  M, Haghparast A (2015) Inhibition of microglial activity alters spinal wide dynamic range neuron discharge and reduces microglial Toll‑like receptor 4 expression in neuropathic rats. Clin Exp Pharmacol Physiol 42: 772–779.
  • Nguyen MD, D’Aigle T, Gowing G, Julien JP, Rivest S (2004) Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a  mouse model of amyotrophic lateral sclerosis. J  Neurosci 24: 1340–1349.
  • Paulino G, Darcel N, Tome D, Raybould H (2008) Adaptation of lipid‑induced satiation is not dependent on caloric density in rats. Physiol Behav 93: 930–936.
  • Peters JH, Gallaher Z R, Ryu V, Czaja K (2013) Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy. J Comp Neurol 521: 3584–3599.
  • Prentice AM, Jebb SA (2003) Fast foods, energy density and obesity: a possible mechanistic link. Obes Rev 4: 187–194.
  • Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard  V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich  CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van TW, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341: 1241214.
  • Ritter RC (2004) Gastrointestinal mechanisms of satiation for food. Physiol Behav 81: 249–273.
  • Rogers RC, McCann MJ (1993) Intramedullary connections of the gastric region in the solitary nucleus: a biocytin histochemical tracing study in the rat. J Auton Nerv Syst 42: 119–130.
  • Rolls BJ (1995) Carbohydrates, fats, and satiety. Am J  Clin Nutr 61: 960S–967S.
  • Rolls BJ (2009) The relationship between dietary energy density and energy intake. Physiol Behav 97: 609–615.
  • Shehab SA (2009) Acute and chronic sectioning of fifth lumbar spinal nerve has equivalent effects on the primary afferents of sciatic nerve in rat spinal cord. J Comp Neurol 517: 481–492.
  • Sun JS, Yang YJ, Zhang YZ, Huang  W, Li ZS, Zhang Y (2015) Minocycline attenuates pain by inhibiting spinal microglia activation in diabetic rats. Mol Med Rep 12: 2677–2682.
  • Troy AE, Simmonds SS, Stocker SD, Browning KN (2016) High fat diet attenuates glucose‑dependent facilitation of 5‑HT3 ‑mediated responses in rat gastric vagal afferents. J Physiol 594: 99–114.
  • Valdearcos  M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK (2014) Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 9: 2124–2138.
  • Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, van NE, Holleman F, Knaapen  M, Romijn JA, Soeters MR, Blaak EE, Dallinga‑Thie  GM, Reijnders D, Ackermans MT, Serlie MJ, Knop FK, Holst JJ, van der Ley C, Kema IP, Zoetendal EG, de Vos WM, Hoekstra JB, Stroes ES, Groen AK, Nieuwdorp M (2014) Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 60: 824–831.
  • Waise TM, Toshinai K, Naznin F, NamKoong C, Md Moin AS, Sakoda H, Nakazato M (2015) One‑day high‑fat diet induces inflammation in the nodose ganglion and hypothalamus of mice. Biochem Biophys Res Commun 464: 1157–1162.
  • Wang X, Wang BR, Zhang XJ, Xu Z, Ding YQ, Ju G (2002) Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM‑infected rats. World J Gastroenterol 8: 540–545.
  • Yi CX, Tschop MH, Woods SC, Hofmann SM (2012) High‑fat‑diet exposure induces IgG accumulation in hypothalamic microglia. Dis Model Mech 5: 686–690.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-28aedd08-2590-489e-96f5-2e08e3c6c9a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.