PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 07 |

Tytuł artykułu

Action of growing degree days on the morphogenesis and physiological responses of calla lily

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The calla lily (Zantedeschia aethiopica) is an ornamental plant with growing acceptance in the market place that shows thermal constraints during planting. This study aimed to analyse its biological cycle in growing degree days (GDD) to determine the best time for planting and production of flower stalks. Rhizomes were planted in pots during all four seasons, and the pots were kept in a greenhouse. Growth analysis and gas exchange measurements were performed every 30 days. Rhizomes planted in the fall and summer showed greater shoot growth, a larger root system and increased production of flower stalks, and they remained in the vegetative phase longer before the onset of flowering, attaining a lower GDD value. Rhizomes planted in winter and spring matured early, which resulted in a higher GDD value and a decrease or lack of flower stalk production during this period. Calla lily rhizomes planted in the fall and summer showed higher water-use efficiency, light-use efficiency and net photosynthesis. It is possible to characterise the stages of development according to gas exchange. The calla lily must be cultivated with an irradiance of 250–400 μmol m⁻² s⁻¹ in a temperature range of 25–28°C during the initial growth phase (up to 1,000 GDD). Thereafter, the temperature range should be reduced to between 13 and 15°C until 3,500 GDD are reached, which was found to enable increased flower stalk production.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

07

Opis fizyczny

p.1893-1902,fig.,ref.

Twórcy

autor
  • Laboratorio de Ecofisiologia Vegetal e Funcionamento de Ecossistemas (LEFE), Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, CEP 37200-000 Lavras, Minas Gerais, Brazil
autor
  • Departamento de Agricultura, Setor de Fitotecnia, Universidade Federal de Lavras, CEP 37200-000 Lavras, Minas Gerais, Brazil
  • Laboratorio de Ecofisiologia Vegetal e Funcionamento de Ecossistemas (LEFE), Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, CEP 37200-000 Lavras, Minas Gerais, Brazil
  • Laboratorio de Ecofisiologia Vegetal e Funcionamento de Ecossistemas (LEFE), Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, CEP 37200-000 Lavras, Minas Gerais, Brazil

Bibliografia

  • Almeida EFA, Paiva PDO (2005) Cultivation of calla lily. Inf Agrop 26:30–35
  • Almeida EFA, Lima LCO, Resende ML, Tavares TS, Carneiro DNM, Paiva PDO, Fonseca J, Paiva R (2007) Conditioning solutions for post harvest conservation of calla lily in cold chamber. Cienc Rural 37:1442–1445. doi:10.1590/S0103-84782007000500035
  • Amutha R, Muthulaksmi S, Rani WB, Indira K, Mareeswari P (2007) Physiological studies on evaluation of sunflower (Helianthus annus L.) genotypes for high temperature stress. Res J Agric Biol Sci 3:245–251
  • Atkin OK, Scheurwater I, Pons TL (2006) High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Glob Change Biol 12:500–515. doi:10.1111/j.1365-2486.2006.01114.x
  • Carneiro DNM, Almeida EFA, Paiva PDO, Frazão JEM, Santos FHS, Carneiro LF (2011) Development and dry mass accumulation in calla lily at the initial cultivation stage. Ciênc Agrotec 35:1085–1092. doi:10.1590/S1413-70542011000600007
  • Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plantarum 127:343–352. doi:10.1111/j.1399-3054.2006.00621.x
  • Franks PJ, Farquhar GD (1999) A relationship between humidity response, growth form and photosynthetic operating point in C3 plants. Plant Cell Environ 22:1337–1349. doi:10.1111/j.1399-3054.2006.00621.x
  • Funnell KA, Hewett EW, Warrington IJ, Plummer JA (1998) Leaf mass partitioning as a determinant of dry matter accumulation in Zantedeschia. J Am Soc Hortic Sci 123:973–979
  • Funnell KA, Hewett EW, Plummer JA, Warrington IJ (2002a) Tuber dry-matter accumulation of Zantedeschia in response to temperature and photosynthetic photon flux. J Hortic Sci Biotech 77:446–455
  • Funnell KA, Hewett EW, Plummer JA, Warrington IJ (2002b) Acclimation of photosynthetic activity of Zantedeschia ‘Best Gold’ in response to temperature and photosynthetic photon flux. J Am Soc Hortic Sci 127:290–296
  • Gadioli JL, Dourado-Neto D, García AG, Basanta MV (2000) Air temperature, maize yield and phenological characterization associated to heat units. Sci Agric 57:377–383. doi:10.1590/S0103-90162000000300001
  • Iglesias-Acosta M, Martinez-Ballesta MC, Teruel JA, Carvajal M (2010) The response of broccoli plants to high temperature and possible role of root aquaporins. Environ Exp Bot 68:83–90. doi:10.1016/j.envexpbot.2009.10.007
  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University, Cambridge 85 pp
  • Kim SH, Gitz DC, Sicherb RC, Baker JT, Timlin DJ, Reddy VR (2007) Temperature dependence of growth, development, and photosynthesis in maize under elevated CO₂. Environ Exp Bot 61:224–236. doi:10.1016/j.envexpbot.2007.06.005
  • Landgraf PRC, Paiva PDO (2009) Production of cut flowers in the state o Minas Gerais. Ciênc Agrotec 33:120–126. doi:10.1590/S1413-70542009000100017
  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot Lond 103:561–579. doi:10.1093/aob/mcn244
  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO₂ effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876. doi:10.1093/jxb/erp096
  • Lee JH, Goudriaan J, Challa H (2002) Using the expolinear growth equation for modeling crop growth in year-round cut chrysanthemum. Ann Bot Lond 92:697–708. doi:10.1093/aob/mcg195
  • Lima JF, Peixoto CP, Ledo CAS (2007) Physiological indexes and initial growth of papaya plants (Carica papaya L.) under greenhouse conditions. Ciênc Agrotec 31:1358–1363. doi:10.1590/S1413-70542007000500013
  • Lino-Neto T, Piques MC, Barbeta C, Sousa MF, Tavares RM, Pais MS (2004) Identification of Zantedeschia aethiopica Cat1 and Cat2 catalase genes and their expression analysis during spathe senescence and regreening. Plant Sci 167:889–898. doi:10.1016/j.plantsci.2004.05.030
  • Malavolta E (2006) Manual of plant mineral nutrition, 1st edn. Agronômica Ceres, São Paulo 638 pp
  • Marcos J, Lacointe A, Tournebize R, Bonhomme R, Sierra J (2011) Water yam (Dioscoreaalata L.) development as affected by photoperiod and temperature: experiment and modeling. Field Crop Res 34:247–256. doi:10.1016/j.fcr.2009.01.002
  • Roberto SR, Sato AJ, Brenner ÉA, Santos CE, Genta W (2004) Phenology and thermal summation (degree days) for ‘Isabel’ grape (Vitis labrusca) produced in the Northwest of Parana State. Semina Ciênc Agr 25:273–280. doi:10.5433/1679-0359.2004v25n4p273
  • Sacksa WJ, Kucharik CJ (2011) Crop management and phenology trends in the US Corn Belt: impacts on yields, evapotranspiration and energy balance. Agr For Meteorol 151:882–894. doi:10.1016/j.agrformet.2011.02.010
  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant, Cell Environ 30:1086–1106. doi:10.1111/j.1365-3040.2007.01682.x
  • Salazar-Parra C, Aguirreolea J, Sanchez-Diaz M, Irigoyen JJ, Morales F (2012) Climate change (elevated CO₂, elevated temperature and moderate drought) triggers the antioxidant enzymes response of grapevine cv. Tempranillo, avoiding oxidative damage. Physiol Plantarum 144:99–110. doi:10.1111/j.1399-3054.2011.01524.x
  • Schons A, Streck NA, Kraulich B, Pinheiro DG, Zanon AJ (2007) Leaf emergence and beginning of starch accumulation in roots of a cassava variety as a function of planting date. Cienc Rural 37:1586–1592. doi:10.1590/S0103-84782007000600013
  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in pima cotton. Plant Cell Environ 27:725–735. doi:10.1111/j.1365-3040.2004.01172.x
  • Souza RR, Paiva PDO, Carvalho JG, Almeida EFA, Barbosa JCV (2010) Boron doses in the development of calla lily in nutrient solution. Ciênc Agrotec 34:1396–1403. doi:10.1590/S1413-70542010000600006
  • Stenzel NMC, Neves CSVJ, Marur CJ, Scholz MBD, Gomes JC (2006) Maturation curves and degree-days accumulation for fruits of ‘Folha Murcha’ orange trees. Sci Agríc 63:219–225. doi:10.1590/S0103-90162006000300002
  • Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO₂ diffusion. J Exp Bot 57:343–354. doi:10.1093/jxb/erj014
  • Thompson DI, Mtshali NP, Ascough GD, Erwin JE, Van Staden J (2011) Flowering control in Watsonia: effects of corm size, temperature, photoperiod and irradiance. Sci Hortic Amst 129:493–502. doi:10.1016/j.scienta.2011.04.004
  • Villa-Nova NA, Pedro Junior MJ, Pereira AR, Ometto JC (1972) Estimation of degree-days above any base temperature, depending on the temperatures: highs and lows. Ciênc Terra 30:1–8
  • Yiotis C, Manetas Y (2010) Sinks for photosynthetic electron flow in green petioles and pedicels of Zantedeschia aethiopica: evidence for innately high photorespiration and cyclic electron flow rates. Planta 232:523–531. doi:10.1007/s00425-010-1193-y

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2867cdb9-1684-43b0-ae0e-a87194818578
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.