PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | 4 |

Tytuł artykułu

Sports talent identification based on motor tests and genetic analysis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Introduction. Physical tests have long been used for determining a child’s athletic abilities before age 9. At that age children are not yet physically mature and their motor skills are being developed. That is why the genetic test can come in [handy] for looking for early indicators of talent in performance areas. Aim of Study. The study aims at explaining the role of physical fitness testing and genetic analysis upon identifying sport talents. We hypothesized that using physical fitness tests will not bring the results which would match up with the ones of genetic analysis. This presumption was verified using motor tests battery and gene analysis in 7 year old population. Material and Methods. The research sample included 169 pupils (97 male; mean age = 7.438 y. and 72 female; mean age = 7.227 y.) attending 3 elementary schools in the region of Nitra, Slovakia. All pupils underwent 9 physical tests to determine their general physical abilities. Each performance of pupils in tests was allotted points. Subsequently, 30 best ranked pupils were selected to undergo 2 ml saliva sampling for genetic analysis. The values of individual genetic score are compared with histogram of genetic score distribution in European population. Results and Conclusions. The study showed that the results of genetic analysis did not match the ones of the fitness tests. Based on the analysis we offered parents and coaches valid information about their children’s prerequisites for certain group of sports, type of muscle fiber, oxidative capacity, nutrition type, regeneration, injury prevention, injury susceptibility, etc.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.201-207,fig.,ref.

Twórcy

autor
  • Department of Physical Education & Sport, Faculty of Education, Constantine the Philosopher University in Nitra, Nitra, Slovakia
autor
autor
  • Department of Food Hygiene and Safety, , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia

Bibliografia

  • 1. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015; 526(7571): 68-74. doi: 10.1038/nature15393
  • 2. Ahmetov II, Fedotovskaya ON. Current Progress in Sports Genomics. Adv Clin Chem. 2015; 70: 247-314. doi: 10.1016/bs.acc.2015.03.003
  • 3. Ahmetov II, Fedotovskaya ON. Sports genomics: Current state of knowledge and future directions. Cell Mol Exerc Physiol. 2012; 1(1). doi: 10.7457/cmep.v1i1.e1
  • 4. Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol. 2016; 116(9): 1595-1625. doi: 10.1007/s00421-016-3411-1
  • 5. Birch HL. Specialisation of extracellular matrix for function in tendons and ligaments. Muscles Ligaments Tendons J. 2013; 3(1): 12-22.
  • 6. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, et al. Familial aggregation of Vo2 max response to exercise training: results from the HERITAGE Family Study. J Appl Physiol. 1999; 87(3): 1003-1008. doi: 10.1152/jappl.1999.87.3.1003
  • 7. Bouchard C, Sarzynski MA, Rice TK, Kraus WE, Church TS, Sung YJ, et al. Personalized Preventive Medicine: Genetics and the Response to Regular Exercise in Preventive Interventions. Prog Cardiovasc Dis. 2015; 57(4): 337-346.
  • 8. Bouchard C, Sarzynski MA, Rice TK, Kraus WE, Church TS, Sung YJ, et al. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J Appl Physiol. 2011; 110(5): 1160-1170. doi: 10.1152/japplphysiol.00973.2010
  • 9. Buxens A, Ruiz JR, Arteta D, Artieda M, Santiago C, Gonzáles-Freire M, et al. Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand J Med Sci Sports. 2011; 21(4): 570-579. doi: 10.1111/j.1600-0838.2009.01079.x
  • 10. Chazaud B. Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunol Cell Biol. 2016; 94(2): 140-145. doi: 10.1038/icb.2015.97
  • 11. Comuzzie AG, Cole SA, Laston SL, Voruganti S, Haack K, Gibbs RA, et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PloS one. 2012; 7(12): e51954. doi: 10.1371/journal.pone.0051954
  • 12. Frank CB. Ligament structure, physiology and function. J Musculoskelet Neuronal Interact. 2004; 4(2): 199-201.
  • 13. Grobler L, Collins M, Lambert MI. Remodelling of Skeletal Muscle Following Exercise-Induced Muscle Damage. Internat SportMed J. 2004; 5(2): 67-83.
  • 14. Heffernan SM, Kilduff LP, Erskine RM, Day SH, Stebbings GK, Cook CJ, et al. COL5A1 gene variants previously associated with reduced soft tissue injury risk are associated with elite athlete status in rugby. BMC Genomics. 2017; 18(S8): 820. doi: 10.1186/s12864-017-4187-3
  • 15. Hill M, Goldspink G. Expression and Splicing of the Insulin-Like Growth Factor Gene in Rodent Muscle is Associated with Muscle Satellite (stem) Cell Activation following Local Tissue Damage. J Physiol. 2003; 549(2): 409-418. doi: 10.1113/jphysiol.2002.035832
  • 16. Järvinen TAH, et al. Achilles tendon disorders: Etiology and epidemiology. Foot Ankle Clin. 2005; 10(2): 255-266.
  • 17. Kelempisioti A, Eskola PJ, Okuloff A, Karjalainen U, Takatalo J, Daavittila L, et al. Genetic susceptibility of intervertebral disc degeneration among young Finnish adults. BMC Med Gen. 2011; 12(1): 153. doi: 10.1186/1471-2350-12-153
  • 18. Klissouras V, Pirnay F, Petit JM. Adaptation to maximal effort: genetics and age. J Appl Physiol. 1973; 35(2): 288-293. doi: 10.1152/jappl.1973.35.2.288
  • 19. Kurosaka M, Machida S. Exercise and skeletal muscle regeneration. J Phys Fitness Sports Med. 2012; 1(3): 537-540.
  • 20. Lucia A, Martin MA, Esteve-Lanao J, San Juan AF, Rubio JC, Oliván J, Arenas J, et al. C34T mutation of the AMPD1 gene in an elite white runner. Br J Sports Med. 2006; 40(3): e7-e7. doi: 10.1136/bjsm.2005.019208
  • 21. Lv Z-T, Gao ST, Cheng P, Liang S, Yu SY, Yang Q, Chen AM. Association between polymorphism rs12722 in COL5A1 and musculoskeletal soft tissue injuries: a systematic review and meta-analysis. Oncotarget. 2018; 9(20): 15365-15374. doi: 10.18632/oncotarget.23805
  • 22. Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics (Oxford, England). 2015; 31(21): 3555-7. doi: 10.1093/bioinformatics/btv402
  • 23. Mann TN, Lamberts RP, Lambert MI. High Responders and Low Responders: Factors Associated with Individual Variation in Response to Standardized Training. Sports Med. 2014; 44(8): 1113-1124. doi: 10.1007/s40279-014-0197-3
  • 24. Myllyharju J, Kivirikko KI. Collagens and collagenrelated diseases. Ann Med. 2001; 33(1): 7-21.
  • 25. Raleigh SM, van der Merwe L, Ribbans WJ, Smith RK, Schwellnus MP, Collins M. Variants within the MMP3 gene are associated with Achilles tendinopathy: possible interaction with the COL5A1 gene. Br J Sports Med. 2009; 43(7): 514-520. doi: 10.1136/bjsm.2008.053892
  • 26. Rankinen T, Bouchard C. Genetic Predictors of Exercise Training Response. Curr Cardiovasc Risk Rep. 2011; 5(4): 368-372. doi: 10.1007/s12170-011-0179-z
  • 27. Rouault K, Scotet V, Autret S, Gaucher F, Dubrana F, tanguy D, et al. Evidence of association between GDF5 polymorphisms and congenital dislocation of the hip in a Caucasian population. Osteoarthritis and Cartilage. 2010; 18(9): 1144-1149. doi: 10.1016/j.joca.2010.05.018
  • 28. Sessa F, Chetta M, Petito A, Franzetti M, Bafunno V, Pisanelli D, et al. Gene polymorphisms and sport attitude in Italian athletes. Genet Test Mol Biomarkers. 2011; 15(4): 285-290.
  • 29. Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol. 2010; 298(5): R1173-87. doi: 10.1152/ajpregu.00735.2009
  • 30. Wang C, Li H, Chen K, Wu B, Liu H. Association of polymorphisms rs1800012 in COL1A1 with sports-related tendon and ligament injuries: a meta-analysis. Oncotarget. 2017; 8(16): 27627-27634. doi: 10.18632/oncotarget.15271
  • 31. Williams CJ, Williams MG, Eynon N, Ashton KJ, Little JP, Wisloff U, et al. Genes to predict VO2 max trainability: A systematic review. BMC Genomics. 2017: 18(8).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-28396e58-f153-4d9f-a7db-acdb733e9014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.