Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 70 | 2 |

Tytuł artykułu

High voltage electrical discharges and ultrasound-assisted extraction of phenolics from indigenous fungus-resistant grape by-product

Treść / Zawartość

Warianty tytułu

Języki publikacji



The possible use of high voltage electrical discharges (HVED) at different frequencies (20, 50, and 100 Hz) and ultrasound-assisted extraction (UAE) at different temperatures (20, 40, and 80°C) for the recovery of phenolics from indigenous fungus-resistant grape by-product was evaluated. All extractions were performed over the period of 5, 10, and 15 min and with methanol- and ethanol-based solvents. Grape pomace (the grape by-product) was collected during the preparation of grape jams. The main phenolics identified in grape pomace were anthocyanins, including malvidin, delphinidin, peonidin-3-O-glucoside, and cyanidin-3-O-glucoside. Beside anthocyanins, phenolic acids, flavan-3-ols, and flavonols were identified. The HVED-assisted extraction showed to be a superior extraction method for obtaining high yields of all analysed compounds. The highest amount of total phenolics (3023.57 mg GAE/100 g DM) was extracted from grape pomace, using 50% (v/v) ethanol and 60 kV/cm HVED at 100 Hz for 15 min. The antioxidant activity of the HVED extract was 2.17 mmol Trolox/g DM. The highest yield of the identified phenolics from grape pomace was obtained with electric field intensity of 60 kV/cm and total energy input of 22.27 kJ/kg, during the extraction.

Słowa kluczowe








Opis fizyczny



  • Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhaca 20, 31000 Osijek, Croatia
  • Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhaca 20, 31000 Osijek, Croatia
  • Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhaca 20, 31000 Osijek, Croatia
  • Vupik plus d.o.o., Sajmiste 113c, 32000 Vukovar, Croatia
  • Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhaca 20, 31000 Osijek, Croatia
  • Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhaca 20, 31000 Osijek, Croatia


  • 1. Alonso, E., Bourzeix, M., Revilla, E. (1991). Suitability of water-ethanol mixtures for the Vitis vinifera seeds contained in a winery by-product. Seed Science and Technology, 19(3), 545-552.
  • 2. Ameer, K., Shahbaz, H.M., Kwon, J-H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 16(2), 295-315.
  • 3. Bakht, A., Geesi, M.H., Riadi, Y., Imran, M., Ali, I., Jawed Ahsan, M., Ajmal, N. (2018). Ultrasound-assisted extraction of some branded tea: Optimization based on polyphenol content, antioxidant potential and thermodynamic study. Saudi Journal of Biological Sciences, 26(5), 1043-1052.
  • 4. Balík, J., Kumsta, M., Rop, O. (2013). Comparison of anthocyanins present in grapes of Vitis vinifera L. varieties and interspecific hybrids grown in the Czech Republic. Chemical Papers, 67(10), 1285-1292.
  • 5. Bamba, B., Shi, J., Tranchant, C., Xue, S., Forney, C., Lim, L.T. (2018). Influence of extraction conditions on ultrasound-assisted recovery of bioactive phenolics from blueberry pomace and their antioxidant activity. Molecules, 23(7), art. no. 1685.
  • 6. Barba, F.J., Boussetta, N., Vorobiev, E. (2015). Emerging technologies for the recovery of isothiocyanates, protein and phenolic compounds from rapeseed and rapeseed press-cake: Effect of high voltage electrical discharges. Innovative Food Science & Emerging Technologies, 31, 67–72.
  • 7. Betancourt, A.O. (2008). Analysis, extraction and recovery of poly-3-hydroxybutyrate present in biomass Université du Québec à Montréal Thesis, pp. 45-55 [].
  • 8. Boussetta, N., Reess, T., Vorobiev, E., Lanoiselle, J.L. (2012). Pulsed electrical discharges: principles and application to extraction of biocompounds, In: N. Lebovka, E. Vorobiev, F. Chemat (Eds.), Enhancing Extraction Processes in the Food Industry, Taylor & Francis – CRC Press, USA, pp. 145–172.
  • 9. Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28(1), 25-30.
  • 10. Bustamante, M.A., Moral, R., Paredes, C., Pérez-Espinosa, A., Moreno-Caselles, J., Pérez-Murcia, M.D. (2008). Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Management, 28(2), 372-380.
  • 11. Ćujić, N., Šavikin, K., Janković, T., Pljevljakušić, D., Zdunić, G., Ibrić, S. (2016). Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chemistry, 194, 135–142.
  • 12. Da Porto, C., Porretto, E., Decorti, D. (2013). Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics Sonochemistry, 20(4), 1076-1080.
  • 13. Do, Q.D., Angkawijaya, A.E., Tran-Nguyen, P.L., Huynh, L.H., Soetaredjo, F.E., Ismadji, S., Ju, Y-H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatic. Journal of Food and Drug Analysis, 22(3), 296-302.
  • 14. Ehrhardt, C., Arapitsas, P., Stefanini, M., Flick, G., Mattivi, F. (2014). Analysis of the phenolic composition of fungus-resistant grape varieties cultivated in Italy and Germany using UHPLC–MS/MS. Journal of Mass Spectrometry, 49(9), SI, 860–869.
  • 15. Kontić, J.K., Rendulić Jelušić, I., Tomaz, I., Preiner, D., Marković, Z., Stupić, D., Andabaka, Ž., Maletić, E. (2016). Polyphenolic composition of the berry skin of six fungus-resistant red grapevine varieties. International Journal of Food Properties, 19(8), 1809-1824.
  • 16. Li, Z., Fan, Y., Xi, J. (2019). Recent advances in high voltage electric discharge extraction of bioactive ingredients from plant materials. Food Chemistry, 277, 246-260.
  • 17. Liu, D., Vorobiev, E., Savoire, R., Lanoisellé. J-L. (2011). Intensification of polyphenols extraction from grape seeds by high voltage electrical discharges and extract concentration by dead-end ultrafiltration. Separation and Purification Technology, 81(2), 134-140.
  • 18. Loncaric, A., Dugalic, K., Mihaljevic, I., Jakobek, L., Pilizota, V. (2014). Effects of sugar addition on total polyphenol content and antioxidant activity of frozen and freeze-dried apple purée. Journal of Agricultural and Food Chemistry, 62(7), 1674−1682.
  • 19. Moure, A., Cruz, J.M., Franco, D., Dominguez, J.M., Siniero, J., Dominguez, H., Nunez, M.J., Parajo, J.C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171.
  • 20. Nisbet, M.A., Martinson, T.E., Mansfield, A.K. (2014). Accumulation and prediction of yeast assimilable nitrogen in New York wine grape cultivars. American Journal of Enology and Viticulture, 65(3), 325–332.
  • 21. Noah, A. (2016). Forbidden Fruits: The fabulous destiny of Noah, Othello, Isabelle, Jacquez, Clinton and Herbemont, Brussels and Vienna, April 2016, 1-7 [].
  • 22. Novak, I., Janeiro, P., Seruga, M., Oliveira-Brett, A.M. (2008). Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection. Analytica Chimica Acta, 630(2), 107-115.
  • 23. Palma, M.L., Taylor, L.T. (1999). Extraction of polyphenolic compounds from grape seeds with near critical carbon dioxide. Journal of Chromatography A, 849(1), 117-124.
  • 24. Parniakov, O., Barba, F.J., Grimi, N., Lebovka, N., Vorobiev, E. (2016). Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chemistry, 192, 842–848.
  • 25. Pedneault, K., Provost, C. (2016). Fungus resistant grape varieties as a suitable alternative for organic wine production: Benefits, limits, and challenges. Scientia Horticulturae, 208, SI, 57–77.
  • 26. Pellegrini, N., Colombi, B., Salvatore, S., Brenna, O.V., Galaverna, G., Del Rio, D., Bianchi, M., Bennett, R., Brighenti, F. (2007). Evaluation of antioxidant capacity of some fruit and vegetable foods: efficiency of extraction of a sequence of solvents. Journal of the Science of Food and Agriculture, 87(1), 103-111.
  • 27. Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., Nunez, M.J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53(6), 2111-2117.
  • 28. Rababah, T.M., Banat, F., Rababah, A., Ereifej, K., Yang, W. (2010). Optimization of extraction conditions of total phenolics, antioxidant activities, and anthocyanin of oregano, thyme, terebinth, and pomegranate. Journal of Food Science, 75(7), C626-C632.
  • 29. Rajha, H.N., Boussetta, N., Louka, N., Maroun, R.G., Vorobiev, E. (2015). Electrical, mechanical, and chemical effects of high-voltage electrical discharges on the polyphenol extraction from vine shoots. Innovative Food Science & Emerging Technologies, 31, 60–66.
  • 30. Rasouli, H., Farzaei, M.H., Khodarahmi, R. (2017). Polyphenols and their benefits: A review. International Journal of Food Properties, 20, Suppl. 2, 1700-1741.
  • 31. Razmara, R.S., Daneshfar, A., Sahraei, R. (2010). Solubility of quercetin in water + methanol and water + ethanol from (292.8 to 333.8) K. Journal of Chemical & Engineering Data, 55(9), 3934-3936.
  • 32. Regulation (EU) no 1308/2013 of the European Parliament and of the Council of 17 December 2013, establishing a common organisation of the markets in agricultural products and repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007. [].
  • 33. Rosello-Soto, E., Barba, F.J., Parniakov, O., Galanakis, C.M., Lebovka, N., Grimi, N., Vorobiev, E. (2015). High voltage electrical discharges, pulsed electric field, and ultrasound assisted extraction of protein and phenolic compounds from olive kernel. Food and Bioprocess Technology, 8(4), 885–894.
  • 34. Shi, J., Yu, J., Pohorly, J., Young, C., Bryan, M. (2003a). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Journal of Food, Agriculture and Environment, 1(2), 42-47.
  • 35. Shi, J., Yu, J., Pohorly, J.E., Kakuda, Y. (2003b). Polyphenolics in grape seeds - biochemistry and functionality. Journal of Medicinal Food, 6(4), 291-299.
  • 36. Slegers, A., Angers, P., Ouellet, É., Truchon, T., Pedneault, K. (2015). Volatile compounds from grape skin, juice and wine from five interspecific hybrid grape cultivars grown in Québec (Canada) for wine production. Molecules, 20(6), 10980–11016.
  • 37. Spigno, G., Tramelli, L., De Faveri, D.M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1), 200-208.
  • 38. Stewart, A.C. (2013). Nitrogen composition of interspecific hybrid and Vitis Vinifera wine grapes from the Eastern United States. Doctoral Dissertation. Purdue University, p. 227 [].
  • 39. Teixeira, A., Baenas, N., Dominguez-Perles, R., Barros, A., Rosa, E., Moreno, D.A., Garcia-Viguera, C. (2014). Natural bioactive compounds from winery by-products as health promoters: a review. International Journal of Molecular Sciences, 15(9), 15638–15678.
  • 40. Touya, G., Reess, T., Pecastaing, L., Gibert, A., Domens, P. (2006). Development of subsonic electrical discharges in water and measurements of the associated pressure waves. Journal of Physics D: Applied Physics, 39(24), 5236–5244.
  • 41. Trojanowska, A., Tsibranska, I., Dzhonova, D., Wroblewska, M., Haponska, M., Jovancic, P., Marturano, V., Tylkowski, B. (2019). Ultrasound-assisted extraction of biologically active compounds and their successive concentration by using membrane processes. Chemical Engineering Research and Design, 147, 378-389.
  • 42. Vos, R. (2014). Stage of maturation, crop load, and shoot density affect the fruit quality of cold-hardy grape cultivars. Doctoral Dissertation. Iowa State University, Aims, IA, p. 120 [].
  • 43. Wang, T., Guo, N., Wang, S.X., Kou, P., Zhao, C.J., Fu, Y.J. (2018). Ultrasound-negative pressure cavitation extraction of phenolic compounds from blueberry leaves and evaluation of its DPPH radical scavenging activity. Food and Bioproducts Processing, 108, 69–80.
  • 44. Yan, L.G., Deng, Y., Ju, T., Wu, K., Xi, J. (2018). Continuous high voltage electrical discharge extraction of flavonoids from peanut shells based on “annular gap type” treatment chamber. Food Chemistry, 256, 350–357.
  • 45. Yang, J., Martinson, T.E., Liu, R.H. (2009). Phytochemical profiles and antioxidant activities of wine grapes. Food Chemistry, 116(1), 332–339.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.