PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 79 | 4 |

Tytuł artykułu

Efficiency of different forest types in carbon storage depends on their internal structure

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Forest vegetation is a key factor in the maintenance of global carbon cycle balance under the present climate change conditions. Forest ecosystems are both buffers against extreme climatic events accompanying climate change and carbon sinks diminishing the environmental impact of anthropogenic greenhouse gas emissions. We investigated the influence of stand structure and site characteristics on the productivity and carbon storage capacity of temperate forest types. Predictors of species productivity were parameters such as stand density, age, height, average diameter and wood density. Morus alba (L.) was more productive than average both in terms of annual volume increment and annual biomass gain, while Quercus sessiliflora (Matt.) Lieb. and Quercus frainetto (Ten.) were significantly less productive than average. Differences in stand productivity were explained by stand density, age, height, altitude, type of regeneration and species composition. Statistically significant differences were measured between the productivity of stands dominated by different woody species, with low productive stands dominated by slow growing species with high wood density like Quercus or Fagus, and highly productive stands rich in fast growing species with low wood density like Populus or Salix. Stands with different plant communities in the underlying herbaceous layer also tended to have different levels of productivity.

Wydawca

-

Rocznik

Tom

79

Numer

4

Opis fizyczny

p.325-332,fig.,ref.

Twórcy

  • Faculty of Natural Science and Ecology, Ecological University of Bucharest, Bd.Vasile Milea 1G, Bucharest, Romania
autor
autor

Bibliografia

  • AIKEN L.S., WEST S.G. 1991. Multiple Regression: Testing and Interpreting Interactions. Sage Publications, London, pp. 100-115.
  • ALEXANDROV G.A. 2007. Carbon stock growth in a forest stand: the power of age. Carbon Balance and Management 2:4.
  • BERG J., FREEMAN M., SIGURDSSON B., KELLOMAKI S., LAITINEN K., NIINISTO S., PELTOLA H., LINDER S. 2003. Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries. ForestEcology and Management 183(1-3):3287-3340.
  • BONAN G.B. 2008. Forests and Climate Change: Feedbacks and the Climate benefits of Forests. Science. 3:1444-1449.
  • BRADFORD J.B., Kastendick D.N. 2010 Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA. Can. J. Forest Res. 40(3): 401-409.
  • CIAIS P.H., REICHSTEIN M., VIORY N., GRAINER A., OGEE J., ALLARD V., AUBINET M., BUCHMANN N., BERNHOFER CHR., CARRARA A., CHEVALLIER F., DE NOBLET N., FRIEND A.D., FRIEDLINGSTEIN P., GRUENWALD T., HEINESCH B., KERONEN P., KNOHL A., KRINNER G., LOUSTAU D., MANCA G., MATTEUCCI G., MIGLIETTA F., OURCIVAL J.M., PAPALE D., PILEGAARD K., RAMBAL S., SEUFERT G., SOUSSANA J.F., SANZ M.J., SCHULZE E.D., VESALA T., VALENTINI R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(22):529-533.
  • FENNING T.M., WALTER C., GARTLAND K.M.A. 2008. Forest biotech and climate change. Nat. Biotech. 26(6):615-616.
  • FILIPOVICI J. 1964. The study of wood - manual for wood industry students. Ed. Didactica si Pedagogica, Bucharest, pp. 120-121. (in Romanian)
  • GHEORGHE I.F., TOPA-STAN S. 2007. The functional role of primary production in carbon cycle annual balance. Annals of ICAS 50:121-134.
  • GIURGIU V. 1998. Researches on cyclic variation of trees increments. Annals of ICAS 41:261-273. (in Romanian with English summary)
  • GIURGIU V., DECEI I., ARMASESCU S. 1972. Dendrometry of trees and stands in Romania - dendrometric tables. Ed. Ceres, Bucharest, pp. 176-267. (in Romanian)
  • GOUGH C.M., VOGEL C.S., SCHMID H.P., CURTIS P.S. 2008. Carbon storage: lessons from the past and predictions for the future. BioScience 58(7):609-622.
  • LEHMANN J. 2007. A handful ofcarbon. Nature 447(10):143-144.
  • LIU G., HAN S. 2009. Long-term forest management and timely transfer of carbon into wood products help reduce atmospheric carbon. Ecological Modelling 220:1719-1723.
  • MITSCH W.J. 1991. Estimating primary productivity of forested wetland communities in different hydrologic landscapes. Landscape Ecology 5:75-92.
  • NAIR P.K.R., KUMAR B.M., NAIR V. 2009. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 172:10-23.
  • OBERLE B., GRACE J.B., CHASE J.M. 2009. Beneath the veil: plant growth form influences the strength of species richness productivity relationships in forests. Global Ecol. Biogeography 18:416-425.
  • PINHEIRO J., BATES D., DEBROY S., SARKAR D. 2006. nl-me: Linear and nonlinear mixed effects models. R package version 31-77.
  • R-DEVELOPMENT-CORE-TEAM 2006. R: A language and environment for statistical computing. Vienna, Austria, http://www.R-project.org: R Foundation for Statistical Computing.
  • SAXE H., ELLWORTH D.S., HEATH J. 1998. Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist 139(3):395-436.
  • THOMPSON I., MACKEY B., MCNULTY S., MOSSELER A. 2009. Forest resilience, biodiversity and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Technical Series, Secretariat of the Convention on Biological Diversity 43, Montreal.
  • WHITTAKER R.H., WOODWELL G.M. 1968. Dimension and production relations of trees and shrubs in the Brookhaven forest, New York. Ecology 56:1-25.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-27c8aaf5-b19f-4663-9d1d-1ffb7ab0e5ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.