Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 24 | Special Issue S1 |

Tytuł artykułu

Modelling and simulation of a new variable stiffness holder for milling of flexible details

Warianty tytułu

Języki publikacji



Modern industry expectations in terms of milling operations often demand the milling of the flexible details by using slender ball-end tools. This is a difficult task because of possible vibration occurrence. Due to existence of certain conditions (small depths of cutting, regeneration phenomena), cutting process may become unstable and self-excited chatter vibration may appear. Frequency of the chatter vibration is close to dominant natural frequency of the workpiece or the tool. One of the methods of chatter vibration avoidance is matching the spindle speed to the optimum phase shift between subsequent cutting edges passes (i.e. the Liao-Young condition). However, the set of optimum spindle speeds from the point of view of vibration reduction may be not optimum one from other points of view. For example milling efficiency or machine tool capabilities cannot be assured. This article presents the idea of a workpiece holder with adjustable stiffness and discusses a new variant of its realization. In the holder, milling process is performed at constant spindle speed and feed speed. In order to avoid vibration the holder stiffness is modified. Stiffness changes modify natural frequencies of the workpiece and thus it is possible to modify dynamic properties of the workpiece in such a way that arbitrary chosen, constant spindle speed will be optimum, due to the Liao-Young condition performance. Calculation of the optimum stiffness is performed before milling, based on the workpieces modal identification results and the finite element model simulations

Słowa kluczowe






Opis fizyczny



  • Faculty of Mechanical Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
  • Faculty of Mechanical Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
  • Faculty of Mechanical Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
  • Faculty of Mechanical Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland


  • 1. Brecher C., Manoharan D., Ladra U., Köpken H.-G.: Chatter suppression with an active workpiece holder. Production Engineering Research and Development,Vol. 4 (2010), pp.239-245.
  • 2. Deja M., Siemiątkowski M. S.: Feature-based generation of machining process plans for optimised parts manufacture, , August 2013, Vol. 24, Issue 4, pp. 831–846.
  • 3. Dohner J. L., Lauffer J. P., Hinnerichs T. D., Shankar N., Regelbrugge M., Kwan C.-M, Xu R., Winterbauer B., Bridgerf K. : Mitigation of chatter instabilities in milling by active structural control. Journal of Sound and Vibration, Vol. 269(2004), pp. 197–211.
  • 4. Ganguli A., Deraemaekar A., Horodinca M., Preumont A.: Active damping of chatter in machine tools - dem-onstration with a „Hardware in the Loop” Simulator. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of System Control Engineering, Vo l . 219 (2005), pp. 359-369.
  • 5. Hoffmann M., Powałka B., Berczyński S., Pajor M.: Iden-tification of cutting forces in frequency domain in milling. Advances in Manufacturing Science and Technology, Vol. 34 (1) (2010), pp. 5-20.
  • 6. Iwicki P., Tejchman A., Chróścielewski J. : Dynamic FE simulations of buckling process in thin-walled cylindrical metal silos. Thin-Walled Structures, (2014), pp. 344-359.
  • 7. K a l i ń s k i K . J . : Vibration surveillance of mechanical sys-tems which are idealised discretely (in Polish). Gda ńsk University of Technology Publishers, Gdańsk 2001.
  • 8. Kaliński K. J.A surveillance of dynamic processes in mechanical systems (in Polish). Gdańsk University of Te c h n o l o g y P u b l i s h e r s,Gdańsk 2012.
  • 9. Kaliński K. J., Chodnicki M., Mazur M., Galewski M. A.: Vibration sur veillance system with var iable stiff ness holder for flexible details milling.[in:] Applied Non-Linear Dynamical Systems, Springer Proceedings in Math-ematics and Statistics, J. Awrejcewicz, Vo l . 9 3 (2 014 b), pp. 175-184.
  • 10. Kaliński K. J., Chodnicki M., Galewski M. A., Mazur M. : Vibration Surveillance for Efficient Milling of Flexible Details in Adjustable Stiffness Holder.Vibroengineering Procedia, Vol. 3 (2014c), pp. 215-218.
  • 11. Kaliński K. J., Galewski M. A. : Chatter vibration sur-veillance by the optimal-linear spindle speed control. Mechanical Systems and Signal Processing, Vol. 25 (2011), pp. 383-399.
  • 12. Kaliński K. J., Galewski M. A.:Vibration surveillance supported by Hardware-In-the-Loop Simulation in mill-ing flexible workpieces. Mechatronics, Vol. 24(2014), pp. 1071-1082.
  • 13. Kaliński K. J., Galewski M. A. : Optimal Spindle Speed Determination for Vibration Reduction During Ball-End Milling of Flexible Details. International Journal of Machine Tools and Manufacture, Vol. 92 (2015), pp. 19-30.
  • 14. Kaliński K. J., Galewski M. A., Mazur M.: High Speed Milling vibration surveillance with optimal spindle speed based on optimal speeds map.Key Engineering Materials,Vol. 597(2014a), pp.125-130.
  • 15. Kaliński K. J., Mazur M., Galewski M. A. : High speed milling vibration surveillance with the use of the map of optimal spindle speeds. [in:] Proceedings of the 8th International Conference on High Speed Machining, Metz, France , (2010), pp. 300-305.
  • 16. Kaliński K. J., Mazur M., Galewski M. A.: The Optimal Spindle Speed Map for Reduction of Chatter Vibration During Milling of Bow Thruster Blade. Solid State Phe-nomena, Vol. 198 (2013), pp. 686-691.
  • 17. Kim M.H., Won D., Ziegert J. :Numerical Analysis and Parameter Study of a Mechanical Damper for Use in Long Slender Endmills. International Journal of Machine Tools and Manufacture, Vol. 46 (2006), pp. 500–507.
  • 18. Liao Y.S., Young Y.C.: A new on-line spindle speed regula-tion strategy for chatter control. International Journal of Machine Tools and Manufacture, Vol. 36 (1996), pp. 651-660.
  • 19. Łuczak M., Manzato S., Peeters B., Branner K., Berring P., Kahsin M. : Updating Finite Element Model of a Wind Turbine Blade Section Using Experimental Modal Analysis Results, Shock and Vibration, Vol. 2014, issue 1, pp. 71-82.
  • 20. Moradi H., Vossoughi G., Movahhedy M.R., Salarieh H.:Suppression of nonlinear regenerative chatter in milling process via robust optimal control. Journal of Process Control, Vol. 23 (2013), pp. 631-648.
  • 21. Nouari M., List G., Girot F. : Wear mechanisms in dry machining of aluminium alloys. International Journal of Mechanical Production Systems Engineering, Vo l . 4 (2003) , pp. 22–29
  • 22. Pajor M., Hoffmann M., Marchelek K.: Identification of cutting process model parameters for multi-edge rotating tools (in Polish), Modelowanie Inżynierskie, Vol. 10 (2011) , pp. 307-314.
  • 23. Parus A., Pajor M., Hoffmann M. : Suppression of Self-Excited Vibration in Cutting Process Using Piezoelectric and Electromagnetic Actuators. Advances in Manufactur-ing Science and Technology, Vol. 33 (2009), pp. 35-50.
  • 24. Powałka B., Pajor M., Berczyński S. : Identification of nonlinear cutting process model in turning. Advances in Manufacturing Science and Technology,Vo l . 33 (3) (2009), pp. 17-25.
  • 25. Quintana G., Ciurana J.: Chatter in machining processes: a review. International Journal of Machine Tools and Manufacture, Vol. 51(2011) , pp. 363-376.
  • 26. Rashid M.K.: Simulation Study on the Improvements of Machining Accuracy by Using Smart Materials. Robotics and Computer-Integrated Manufacturing, Vol. 21(2005), pp. 249–257.
  • 27. Sellmeier V., Denkena B.: High speed process damping in milling. CIRP Journal of Manufacturing Science and Technology, Vol. 5 (2012) , pp. 8-19.
  • 28. Siemiątkowski M., Przybylski W. : Simulation studies of process flow with in-line part inspection in machining cells. Journal of Materials Processing Technology , January 10, 2006, Vol. 171, Issue 1, pp. 27-34.
  • 29. Soliman E., Ismail F. : Chatter suppression by adaptive speed modulation.International Journal of Machine Tools and Manufacture, Vol. 37(1997) , pp. 355–369.
  • 30. Tomków J. : Vibrostability of machine tools (in Polish), The Scientific and Technical Publications, Warsaw 1997.Plik : PMR-spec_KK_M..: 33256 zn. norm. [18,5 str], stan 2017-02-06, kor. epw

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.