Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 53 | 3 |

Tytuł artykułu

Plant surface waxes and their interactions with the insects


Warianty tytułu

Woski powierzchniowe roślin i ich interakcje z owadami

Języki publikacji



Rozwój zdolności efektywnego przymocowania się do powierzchni roślin to ważny punkt w ewolucji owadów i jedna z głównych ewolucyjnych przeszkód ograniczających kolonizację roślin lądowych. Obecnie wzrasta zainteresowanie uprawą roślin, które oferują redukcję patogenów i owadów. Jednakże wprowadzenie takich roślin wymaga szczegółowej wiedzy na temat wpływu powierzchni roślin na biologię roślinożernych owadów oraz ich naturalnych wrogów.
Development of the ability to attach effectively to plant surfaces has been a crucial point in insect evolution and one of the evolutionary obstacles that has limited the number of insect orders that have colonized terrestrial plants. There is a strong tendency to increase cultivation plants that can reduce populations of pathogens and insect pests. However, the introduction of such plants to agriculture requires fairly detailed knowledge of plant structure and chemicals, including their effect on biology phytophagous insects and their natural enemies.

Słowa kluczowe








Opis fizyczny





  • Athukorala Y., Mazza G. 2010. Supercritical carbon dioxide and hexane extraction of wax from triticale straw: Content, composition and thermal properties. Ind. Crops Prod. 31: 550–556.
  • Barthlott W., Neinhuis C., Cutler D., Ditsch F., Muesel I., Theisen I., Wilhelm H. 1998. Classification and terminology of plant epicuticular waxes. Bot. J. Linnean Soc. 126: 237–260.
  • Blua M.J., Yoshida H.A., Toscano N.C. 1995. Oviposition preference of two Bemisia species (Homoptera: Aleyrodidae). Environ. Entomol. 24: 88–93.
  • Boeve J.-L., Voigt D., Gorb S.N. 2011. Crystalline wax coverage of the cuticle in easy bleeding sawfly larvae. Arthr. Struct. Dev. 40: 186–189.
  • Brennan E.B., Hrusa G.F., Weinbaum S.A., Levison W.J. 2001a. Resistance of Eucalyptus species to Glycaspis brimblecombei (Homoptera: Psyllidae) in the San Francisco Bay area. Pan-Pacific Entomol. 77: 249–253.
  • Brennan E.B., Weinbaum S.A. 2001. Stylet penetration and survival of three psyllid species on adult leaves and ‘waxy’ and ‘de-waxed’ juvenile leaves of Eucalyptus globulus. Entomol. Exp. Appl. 100: 355–363.
  • Brennan E.B., Weinbaum S.A., Rosenheim J.A., Karban R. 2001b. Heteroblasty in Eucalyptus globulus (Myricales: Myricaceae) affects ovipositonal and settling preferences of Ctenarytaina eucalypti and C. spatulata (Homoptera: Psyllidae). Environ. Entomol. 30: 1144–1149.
  • Daza-Bustamante P., Fuentes-Contreras E., Niemeyer H.M. 2003. Acceptance and suitability of Acyrthosiphon pisum and Sitobion avenae as hosts of the aphid parasitoid Aphidius ervi (Hymenoptera: Braconidae). Eur. J. Entomol. 100: 49–53.
  • Desneux N., Ramirez-Romero R. 2009. Plant characteristics mediated by growing conditions can impact parasitoid’s ability to attack host aphids in winter canola. J. Pest. Sci. 82 (4): 335–342.
  • Edwards P.B. 1982. Do waxes on juvenile Eucalyptus leaves provide protection from grazing insects? Austral. J. Ecol. 7: 347–352.
  • Eigenbrode S.D., Castagnola T., Roux M.-B., Steljes L. 1996. Mobility of three generalist predators is greater on cabbage with glossy leaf wax than on cabbage with a wax bloom. Entomol. Exp. Appl. 81: 335–343.
  • Eigenbrode S.D., Kabalo N.N. 1999. Effects of Brassica oleracea waxblooms on predation and attachment by Hippodamia convergens. Entomol. Exp. Appl. 91: 125–130.
  • Eigenbrode S.D., Kabalo N.N., Rutledge C.E. 2000a. Potential of reduced-waxbloom oilseed Brassica for insect pest resistance. J. Agric. Entomol. 17: 53–63.
  • Eigenbrode S.D., Moodie S., Castagnola T. 1995. Generalist predators mediate resistance to a phytophagous pest in cabbage with glossy leaf wax. Entomol. Exp. Appl. 77: 335–342.
  • Eigenbrode S.D., Rayor L., Chow J., Latty P. 2000b. Effects of wax bloom variation in Brassica oleracea on foraging by a vespid wasp. Entomol. Exp. Appl. 97: 161–166.
  • Gentry G.L., Barbosa P. 2006. Effects of leaf epicuticular wax on the movement, foraging behavior, and attack efficacy of Diaeretiella rapae. Entomol. Exp. Appl. 121: 115–122.
  • Haliński Ł.P., Paszkiewicz M., Gołębiowski M., Stepnowski P. 2012. The chemical composition of cuticular waxes from leaves of the gboma eggplant (Solanum macrocarpon L.). J. Food Comp. Anal. 25: 74–78.
  • Jackson D.M., Farnham M.W., Simmons A.M., van Giessen W.A., Elsey K.D. 2000. Effects of planting pattern of collards on resistance to whiteflies (Homoptera: Aleyrodidae) and on parasitoid abundance. J. Econ. Entomol. 93 (4): 1227–1236.
  • Jetter R. 2000. Long-chain alkanediols from Myricaria germanica leaf cuticular waxes. Phytochemistry 55: 169–176.
  • Koch K., Barthlott W. 2006. Plant epicuticular waxes: chemistry, form, function and self-assembly. Nat. Prod. Commun. 1: 1067−1072.
  • Koch K., Bhushan B., Barthlott W. 2009. Multifunctional surface structures of plants: An inspiration for biomimetics. Prog. Mater. Sci. 54: 137−178.
  • Koch K., Ensikat H.J. 2008. The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Rev. Micron 39: 759−772.
  • Le Ralec A., Anselme C., Outreman Y., Poirié M., Van Baaren J., Le Lann C., Van Alphen J.J.-M. 2010. Evolutionary ecology of the interactions between aphids and their parasitoids. C.R. Biologies 333: 554−565.
  • Le Ralec A., Ribulé A., Barragan A., Outreman Y. 2011. Host range limitation caused by incomplete host regulation in an aphid parasitoid. J. Insect Physiol. 57: 363−371.
  • McAuslane H.J., Simmons A.M., Jackson D.M. 2000. Parasitism of silverleaf whitefly, Bemisia argentifolii, on collard with reduced or normal leaf wax. Florida Entomol. 83: 428–437.
  • Ou S., Zhao J., Wang Y., Tian Y., Wang J. 2012. Preparation of octacosanol from filter mud produced after sugarcane juice clarification. LWT – Food Sci. Tech. 45: 295–298.
  • Reina-Pinto J.J., Yephremov A. 2009. Surface lipids and plant defenses. Plant Physiol. Biochem. 47: 540−549.
  • Reisige K., Gorzelanny Ch., Daniels U., Moerschbacher B.M. 2006. The C28 aldehyde octacosanal is a morphogenetically active component involved in host plant recognition and infection structure differentiation in the wheat stem rust fungus. Physiol. Mol. Plant Pathol. 68: 33–40.
  • Rutledge C.E., O’Neil R.J. 2005. Orius insidiosus (Say) as a predator of the soybean aphid, Aphis glycines Matsumura. Biol. Control 33: 56−64.
  • Rutledge C.E., Robinson A., Eigenbrode S.D. 2003. Effects of a simple plant morphological mutation on the arthropod community and the impacts of predators on a principal insect herbivore. Oecologia 135: 39–50.
  • Shepherd T., Robertson G.W., Griffiths D.W., Birch A.N.E. 1999. Epicuticular wax ester and triacyloglycerol composition in relation to aphid infestation and resistance in red raspberry (Rubus idaeus L.). Phytochemistry 52: 1255−1267.
  • Ulmer B., Gillott C., Woods D., Erlandson M. 2002. Diamondback moth, Plutella xylostella (L.) feeding and oviposition preferences on glossy and waxy Brassica rapa (L.) lines. Crop Prot. 21: 327−331.
  • Way M.J., Murdie G. 1965. An example of varietal resistance of Brussels sprouts. Ann. Appl. Biol. 56: 326–328.
  • White C., Eigenbrode S.D. 2000. Leaf surface waxbloom in Pisum sativum influences predation and intra-guild interactions involving two predator species. Oecologia 124: 252–259.
  • Whitney H.M., Federle W. 2013. Biomechanics of plant-insect interactions. Curr. Opin. Plant Biol. 16: 105–111.
  • Wójcicka A. 2007. Effect of triticale surface compounds on growth and development of cereal aphids. Aphids and Other Homopterous Insects 13: 191−197.
  • Wójcicka A. 2011. Wpływ wosków powierzchniowych pszenżyta ozimego na elementy biologii mszycy czeremchowo-zbożowej. [Effect of surface waxes of winter triticale on the biology of bird cherry-oat aphid Rhopalosiphum padi]. Prog. Plant Prot./Post. Ochr. Roślin 51 (4): 1590–1594.
  • Wójcicka A., Leszczyński B., Warzecha R. 2011. Wpływ metanolowych ekstraktów wosków powierzchniowych pszenżyta ozimego na mszycę różano-trawową M. dirhodum. [Effect of methanol surface waxes of the winter triticale on rose-grain aphid]. Prog. Plant Prot./Post. Ochr. Roślin 51 (4): 1595–1599.
  • Wójcicka A., Sempruch C., Łukasik I., Warzecha R. 2010a. Wpływ wosków powierzchniowych pszenżyta ozimego na zachowanie mszycy różano-trawowej M. dirhodum. Zesz. Probl. Post. Nauk Rol. 556 (2): 503–511.
  • Wójcicka A., Sempruch C., Warzecha R. 2010b. Wpływ wosków powierzchniowych pszenżyta ozimego na wybór rośliny żywicielskiej przez mszyce zbożowe. [Effect of surface waxes of triticale on host selection by cereal aphids]. Prog. Plant Prot./Post. Ochr. Roślin 50 (2): 609–612.
  • Yin Y., Bi Y., Chen S., Li Y., Wang Y., Ge Y., Ding B., Li Y., Zhang Z. 2011. Chemical composition and antifungal activity of cuticular wax isolated from Asian pear fruit (cv. Pingguoli). Sci. Hort. 129: 577–582.


Rekord w opracowaniu

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.