Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 6 |
Tytuł artykułu

Leaf photosynthesis, chlorophyll fluorescence, ion content and free amino acid in Caragana korshinskii Kom exposed to NaCl stress

Warianty tytułu
Języki publikacji
To understand the physiological response under salt stress, photosynthesis, PSII efficiency, contents of ions and free amino acids in leaves of Caragana korshinskii Kom (Caragana) exposed to three levels of salinity were investigated. Results showed that the decrease in photosynthesis of Caragana with salt stress was largely dependent on stomatal closure during the experimental period. In the early period of stress, due to the dissipation of excess excitation energy which occurred by the increase in nonphotochemical quenching, photodamage was avoided and maximum efficiency of PSII was not affected. However, with increased salt stress, the photoprotective mechanism was not sufficient to avoid oxidative damage. Thus, damage to PSII and its resulting non-stomatal inhibition of photosynthesis may occur. At 18 days with 300 mM NaCl treatment, a non-stomatal factor was responsible for the inhibition of photosynthesis. Accumulation of Na⁺ and K⁺ in leaves indicated no competition between Na⁺ and K⁺ absorption, which suggests the potential for a unique pathway of Na⁺ absorption in Caragana. There was a critical salinity level for the accumulation of free amino acids in salt-treated leaves of Caragana, i.e., free amino acids accumulated slowly below critical level, but rapidly above the critical level. In addition, proline was the most abundant among all individual free amino acids.
Słowa kluczowe
Opis fizyczny
  • Key Lab of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A and F University, 712100 Yangling, Shaanxi, China
  • Key Lab of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A and F University, 712100 Yangling, Shaanxi, China
  • College of Agriculture, Guangxi University, 530005 Nanning, Guangxi, China
  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. doi:10.1016/j. plantsci.2003.10.024
  • Athar HR, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–231. doi:10.1016/j.envexpbot.2007.10.018
  • Aziz A, Martin-Tanguy J, Larher F (1999) Salt stress-induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs. Plant Sci 145:83–91. doi:10.1016/S0168-9452(99)00071-0
  • Chen W, Cui P, Sun H, Guo W, Yang C, Jin H, Fang B, Shi D (2009) Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Ind Crop Prod 30:351–358. doi:10.1016/j. indcrop.2009.06.007
  • Cheng X, Huang M, Shao M, Warrington DN (2009) A comparison of fine root distribution and water consumption of mature Caragana korshinkii Kom grown in two soils in a semiarid region, China. Plant Soil 315:149–161. doi:10.1007/s11104-008-9739-5
  • Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1058. doi:10.1093/jxb/erj102
  • da Silva EC, Nogueira RJMC, de Araújo FP, de Melo NF, de Azevedo Neto AD (2008) Physiological responses to salt stress in young umbu plants. Environ Exp Bot 63:147–157. doi:10.1016/j.envex pbot.2007.11.010
  • da Silva EN, Ribeiro RV, Ferreira-Silva SL, Viégas RA, Silveira JAG (2011) Salt stress induced damages on the photosynthesis of physic nut young plants. Sci Agr 68:62–68. doi:10.1590/S0103-90162011000100010
  • Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626. doi:10.1146/annurev.pp.43.060192. 003123
  • Epron D, Dreyer E, Bréda N (1992) Photosynthesis of oak trees [Quercus petraea (Matt.) Liebl.] during drought under field conditions: diurnal courses of net CO₂ assimilation and photochemical efficiency of photosystem II. Plant, Cell Environ 15:809–820. doi:10.1111/j.1365-3040.1992.tb02148.x
  • Everard JD, Gucci R, Kann SC, Flore JA, Loescher WH (1994) Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol 106:281–292. doi:10.1104/pp.106.1.281
  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic election transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/S0304-4165(89)80016-9
  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Ann Rev Plant Physiol 31:149–190. doi: 10.1146/annurev.pp.31.060180.001053
  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102. doi:10.1023/A:1005703923347
  • Hartzendorf T, Rolletschek H (2001) Effects of NaCl-salinity on amino acid and carbohydrate contents of Phragmites australis. Aquat Bot 69:195–208. doi:10.1016/S0304-3770(01)00138-3
  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na⁺ and K⁺ transport in Oryza sativa. Plant J 27:129–138. doi:10.1046/j.1365-313x.2001.01077.x
  • Jamil M, Rehman S, Lee KJ, Kim JM, Kim HS, Rha ES (2007) Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Sci Agr 64:111–118. doi:10.1590/S0103-9016 2007000200002
  • Kao WY, Tsai TT, Tsai HC, Shih CN (2006) Response of three Glycine species to salt stress. Environ Exp Bot 56:120–125. doi: 10.1016/j.envexpbot.2005.01.009
  • Keutgen AJ, Pawelzik E (2008) Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity. Food Chem 111:642–647. doi:10.1016/j. foodchem.2008.04.032
  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monogr 1:1–29. doi:10.1093/treephys/17.7.490
  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plantarum 74:566–574. doi:10.1111/j.1399-3054.1988.tb02020.x
  • Kumar SG, Reddy AM, Sudhakar C (2003) NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci 165:1245–1251. doi:10.1016/S0168-9452(03)00332-7
  • Li XY, Gao SY, Xu HY, Liu LY (2006) Growth of Caragana korshinskii using runoff-collecting microcatchments under semiarid condition. J Hydrol 328:338–346. doi:10.1016/j.jhydrol. 2005.12.002
  • Lunde C, Drew DP, Jacobs AK, Tester M (2007) Exclusion of Na⁺ via sodium ATPase (PpENA1) ensures normal growth of Physcomitrella patens under moderate salt stress. Plant Physiol 144:1786–1796. doi:10.1104/pp.106.094946
  • Ma CC, Gao YB, Guo HY, Wang JL (2003) Interspecific transition among Caragana microphylla, C. davazamcii and C. korshinskii along geographic gradient. II. Characteristics of photosynthesis and water metabolism. Acta Bot Sin 45:1228–1237. doi:CNKI: SUN:ZWXB.0.2003-10-012
  • Ma CC, Gao YB, Guo HY, Wang JL (2004) Photosynthesis, transpiration, and water use efficiency of Caragana microphylla, C. intermedia, and C. korshinskii. Photosynthetica 42:65–70. doi:10.1023/B:PHOT.0000040571.63254.c2
  • Martinez-Rodriguez MM, Estaň MT, Moyano E, Garcia-Abellan JO, Flores FB, Campos JF, Al-Azzawi MJ, Flowers TJ, Bolarín MC (2008) The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environ Exp Bot 63:392–401. doi:10.1016/j.envexpbot.2007.12.007
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659
  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20. doi:10.1016/j.plaphy.2009.10.006
  • Mishra SK, Subrahmanyam D, Singhal GS (1991) Interralationship between salt and light stress on primary process of photosynthesis. J Plant Physiol 138:92–96. doi:10.1016/S0176-1617(11) 80736-4
  • Morales F, Abadia A, Gomez-Aparis J, Abadia J (1992) Effects of combined NaCl and CaCl₂ salinity on photosynthetic parameters of barley grown in nutrient solution. Plant Physiol 86:419–426. doi:10.1111/j.1399-3054.1992.tb01338.x
  • Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001. 00808.x
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032 607.092911
  • Naumann JC, Young DR, Anderson JE (2008) Leaf chlorophyll fluorescence, reflectance, and physiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera. Environ Exp Bot 63:402–409. doi:10.1016/j.envexpbot. 2007.12.008
  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811. doi:10.2135/cropsci2004.8060
  • Qiu N, Lu Q, Lu C (2003) Photosynthesis, photosystem II efficiency and the xanthophylls cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol 159:479–486. doi:10.1046/j.1469-8137.2003.00825.x
  • Rai VK (2002) Role of amino acids in plant responses to stresses. Biol Plantarum 45:481–487. doi:10.1023/A:1022308229759
  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci India 86:407–421
  • Salisbury FB, Ross CW (1992) Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Aust J Plant Physiol 19:331–340. doi:10.1071/PP9920331
  • Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399–404. doi: 10.1016/S0955-0674(00)00227-1
  • Shangguan Z, Shao M, Dyckmans J (2000) Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. J Plant Physiol 156: 46–51. doi:10.1016/S0176-1617(00)80271-0
  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060. doi: 10.1016/0031-9422(89)80182-7
  • Souza RP, Machado EC, Silva JAB, Lagôa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45–56. doi:10.1016/S0098-8472(03)00059-5
  • Takahashi R, Nishio T, Ichizen N, Takano T (2007) Salt-tolerant reed plants contain lower Na⁺ and higher K⁺ than salt-sensitive reed plants. Acta Physiol Plant 29:431–438. doi:10.1007/s11738-007-0052-3
  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759. doi:10.1007/s00726-008-0061-6
  • Xiao CW, Sun OJ, Zhou GS, Zhao JZ, Wu G (2005) Interactive effects of elevated CO₂ and drought stress on leaf water potential and growth in Caragana intermedia. Trees-Struct Funct 19:712–721. doi:10.1007/s00468-005-0435-2
  • Yamamoto A, Shim IES, Fujihara S, Yoneyama T, Usui K (2003) Physiochemical factors affecting the salt tolerance of Echinochloa crus-galli Beauv. var. formosensis Ohwi. Weed Biol Manag 3:98–104. doi:10.1046/j.1445-6664.2003.00090.x
  • Zheng Y, Xie Z, Gao Y, Jiang L, Shimizu H, Tobe K (2004) Germination responses of Caragana korshinskii Kom. to light, temperature and water stress. Ecol Res 19:553–558. doi:10.1111/j.1440-1703.2004.00668.x
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.