PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 5 |

Tytuł artykułu

Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: the whole roots level

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The lead absorbed by the roots induce oxidative stress conditions through the Reactive oxygen species (ROS) production for the pea plants cultivated hydroponically for 96 h on a Hoagland medium with the addition of 0.1 and 0.5 mM of Pb(NO₃)₂. The alterations in O₂⁻˙ and H₂O₂ concentrations were monitored spectrophotometrically which show a rapid increase in O₂⁻˙ production during the initial 2 h, and in case of H₂O₂, during the eighth hour of cultivation. The level of ROS remained higher at all the time points for the roots of the plants cultivated with Pb²⁺ and it was proportional to metal concentration. The production of O₂⁻˙ and H₂O₂ was visualized by means of fluorescence microscope technique. They are produced in nonenzymatic membrane lipid peroxidation and its final product is Malondialdehyde, the level of which increased together with the level of H₂O₂. As stress intensity raised (duration of treatment and Pb²⁺ concentration), so did the activities of superoxide dismutases, catalase and ascorbate peroxidase antioxidative enzymes and of low-molecular antioxidants, particularly glutathione (GSH), homoglutathione (h-GSH) and cysteine substrate toward their synthesis. The root cells redox state (GSH/GSSG) dropped proportionally to lead stress intensity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

5

Opis fizyczny

p.1053-1063,fig.,ref.

Twórcy

autor
  • Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Collegium Bilogicum, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Collegium Bilogicum, Umultowska 89, 61-614 Poznan, Poland
  • Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Collegium Bilogicum, Umultowska 89, 61-614 Poznan, Poland

Bibliografia

  • Aebi HE (1983) Catalase in vitro. In: Bergmeyer HU (ed) Methods of enzymatic analyses, vol 3. Verlag Chemie, Weinheim, pp 273–282
  • Aravind P, Prasad MNV (2005) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43:107–116. doi:10.1016/j.plaphy.2005.01.002
  • Barałkiewicz D, Kozka M, Kachlicki P, Piechalak A, Tomaszewska B (2008) Analysis of oxidized and reduced phytochelatins in pea and lupin plants using HPLC/MSn. Int J Environ Anal Chem 88:979–988
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8
  • Becana M, Aparicio-Tejo P, Irigoyen JJ, Sanchez-Diaz M (1986) Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol 82:1169–1171. doi:10.1104/pp.82.4.1169
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Breusegem FV, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414. doi:10.1016/S0168-9452(01)00452-6
  • Bruns I, Sutter K, Menge S, Neumann D, Krauss GJ (2001) Cadmium lets increase the glutathione pool in bryophytes. J Plant Physiol 158:79–89. doi:10.1078/0176-1617-00071
  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxide activities in root tips of soybean (Glycine max). Physiol Plant 8:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x
  • Camp WV, Capiau K, Montagu MV, Inze D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplast. Plant Physiol 112:1703–1714. doi:10.1104/pp.112.4.1703
  • Chen LM, Lin CC, Kao CH (2000) Cooper toxicity in rice seedlings: changes in antioxidative enzyme activities, H₂O₂ level, and cell wall peroxidase activity in roots. Bot Bull Acad Sin 41:99–103
  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120. doi:10.1016/j.plantsci.2004.07.021
  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109. doi:10.1093/jexbot/52. 358.1101
  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Mol Plant Pathol 23:345–355. doi: 10.1016/0048-4059(83)90019-X
  • Foyer C, Theodoulou FL, Delrot S (2001) The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci 6:486–487. doi:10.1016/S1360-1385(01)02086-6
  • Gabara B, Skłodowska M, Wyrwicka A, Glińska S, Gapińska MB (2003) Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. Leaves sprayed with acid rain. Plant Sci 164:507–516. doi:10.1016/S0168-9452(02)00447-8
  • Gechev T, Gadjev I, Breusegem FV, Inze D, Dukiandjiev S, Toneva V, Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59:708–714. doi:10.1007/s00018-002-8459-x
  • Grill D, Tausz M, De Kok LJ (2001) Significance of glutathione in plant adaptation to the environment. Kluwer Academic Publishers, Holland, pp 1–50
  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212. doi:10.1016/0003-2697(80)90139-6
  • Gwozdz EA, Przymusiński R, Rucińska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465. doi:10.1007/s11738-997-0042-5
  • Heath RL, Packer KY (1968) Photoperoxidation in isolated chloroplasts. Part I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861 (68)90654-1
  • Henmi K, Tsuboi S, Demura T, Fukuda H, Demura T, Fukuda H, Iwabuchi M, Ogawa KA (2001) Possible role of glutathione and glutathione disulfide in tracheary element. Differentiation in the cultured mesophyll cells of Zinnia elegans. Plant Cell Physiol 42:673–675. doi:10.1093/pcp/pce072
  • Karabal E, Yucel M, Oktem HA (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933. doi:10.1016/S0168-9452(03)00067-0
  • Kim YO, Takeuchi F, Hara M, Kuboi T (2000) Characterization of cadmium-tolerant carrot cells in response to cadmium stress. Soil Sci Plant Nutr 46:807–814
  • Kopyra M, Gwozdz EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017. doi:10.1016/j.plaphy.2003.09.003
  • Malecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defence to lead stress in subcellular compartments of pea root cells. Acta Biochim Pol 48:687–698
  • Malecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30:629–637. doi:10.1007/s11738-008-0159-1
  • Nagalakshmi N, Prasad MNV (2000) Responses of glutathione cycle enzymes and glutatione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299. doi:10.1016/S0168-9452(00)00392-7
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Piechalak A, Tomaszewska B, Barałkiewicz D, Małecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–167. doi:10.1016/S0031-9422(02)00067-5
  • Piechalak A, Tomaszewska B, Barałkiewicz D (2003) Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry 62:1239–1251. doi:10.1016/S0031-9422(03) 00515-6
  • Piechalak A, Janczur K, Mierzwa D, Nuc P, Małecka A, Tomaszewska B (2006) Phytochelatin based system of plant response to lead accumulation. Acta Biochim Pol 53:198
  • Prasad KVSK, Saradhi PP, Sharmila P (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42:1–10. doi:10.1016/S0098-8472(99)00013-1
  • Qureshi MI, Israr M, Abdin MZ, Iqbal M (2005) Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ Exp Bot 53:185–193. doi:10.1016/j.envexpbot.2004. 03.014
  • Qureshi MI, Qadir S, Zolla L (2007) Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 164:1239–1260. doi:10.1016/j.jplph.2007.01.013
  • Radotic K, Ducic T, Mutavdzic D (2000) Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113. doi:10.1016/S0098-8472(00)00059-9
  • Ric de Vos CH, Schat H, Vooijs V, Ernst HO (1989) Copper-induced damage to the permeability barrier in roots of Silene cucubalus. J Plant Physiol 135:164–169
  • Rucinska R, Waplak S, Gwozdz EA (1999) Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol Biochem 37:187–194. doi:10.1016/S0981-9428(99)80033-3
  • Ruley AT, Sharma NC, Sahi SV (2004) Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol Biochem 42:899–906. doi:10.1016/j.plaphy.2004.12.001
  • Shah K, Kumar G, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144. doi:10.1016/S0168-9452(01)00517-9
  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52. doi:10.1590/S1677-04202005000100004
  • Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH, Miyamoto K (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293:653–659. doi:10.1016/S0006-291X(02)00265-6
  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655. doi:10.1016/S0168-9452(03) 00022-0
  • Vianello A, Zancani M, Peresson C, Petrussa E, Casolo V, Krajnakova J, Patui S, Braidot E, Marci F (2007) Plant mitochondrial pathway leading to programmed cell death. Physiol Plant 129:242–252. doi:10.1111/j.1399-3054.2006.00767.x

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2747dbf6-3494-4ee7-a751-69f3f66522fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.