Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 27 | 1 |

Tytuł artykułu

Prediction of ship motions via a three-dimensional time-domain method following a quad-tree adaptive mesh technique


Warianty tytułu

Języki publikacji



A three-dimensional (3D) time-domain method is developed to predict ship motions in waves. To evaluate the FroudeKrylov (F-K) forces and hydrostatic forces under the instantaneous incident wave profile, an adaptive mesh technique based on a quad-tree subdivision is adopted to generate instantaneous wet meshes for ship. For quadrilateral panels under both mean free surface and instantaneous incident wave profiles, Froude-Krylov forces and hydrostatic forces are computed by analytical exact pressure integration expressions, allowing for considerably coarse meshes without loss of accuracy. And for quadrilateral panels interacting with the wave profile, F-K and hydrostatic forces are evaluated following a quad-tree subdivision. The transient free surface Green function (TFSGF) is essential to evaluate radiation and diffraction forces based on linear theory. To reduce the numerical error due to unclear partition, a precise integration method is applied to solve the TFSGF in the partition computation time domain. Computations are carried out for a Wigley hull form and S175 container ship, and the results show good agreement with both experimental results and published results

Słowa kluczowe








Opis fizyczny



  • Dalian Maritime University, 1 Linghai Road, 116026 Dalian, China
  • Dalian Maritime University, 1 Linghai Road, 116026 Dalian, China
  • Dongbei University of Finance and Economics, 217 Jianshan Street, Shahekou District, 116025 Dalian, China


  • 1. Beck R. F., Liapis S. J. (1983): Transient motions of floating bodies at zero forward speed. Journal of Ship Research, 3(31), 164-175.
  • 2. Blandeau F., Francois M., et al. (1999): Linear and nonlinear wave loads on FPSOs. Proceedings of the ASME 9th International Conference on Offshore Mechanics and Arctic Engineering, France.
  • 3. Clement A. H. (1998): An ordinary differential equation for the Green function of time-domain free-surface hydrodynamics. Journal of Engineering Mathematics, 33(2), 201-217.
  • 4. Datta R., Rodrigues J. M., Soares C. G. (2011): Study of the motions of fishing vessels by a time domain panel method. Ocean Engineering, 38(5), 782-792.
  • 5. Hess J. L., Smith A. M. O. (1964): Calculation of non-lifting potential flow about arbitrary three-dimensional bodies. Journal of Ship Research, 8, 22-44.
  • 6. Huang D. B. (1992): Approximation of time-domain free surface function and its spatial derivatives. Journal of Shipbuilding of China, 4, 16-25.
  • 7. Journée J. M. J. (1992): Experiments and calculations on four Wigley Hull form. Report 0909, Delft University of Technology.
  • 8. Kim K. H., Kim Y. (2010): Comparative Study on Ship Hydrodynamics Based on Neumann-Kelvin and DoubleBody Linearizations in Time-Domain Analysis. International Journal of Offshore & Polar Engineering, 10, 265-274.
  • 9. King B. W. (1987): Time domain analysis of wave exciting forces on ships and bodies. Report No. 306, University of Michigan.
  • 10. Li Z. F., Ren H. L., Tong X. W., et al. (2015): A precise computation method of transient free surface Green function. Ocean Engineering, 105, 318-326.
  • 11. Liu X. M., Zhou G., Zhu S., et al. (2014): A modified highly precise direct integration method for a class of linear timevarying systems. China Phys. Mech. Astron., 57, 1382-1389.
  • 12. Magee A. R., Beck R. F. (1988): Compendium of ship motion calculations using linear time-domain analysis. Report No. 310, University of Michigan.
  • 13. Rodrigues J. M., Guedes Soares C. (2017): Froude-Krylov forces from exact pressure integrations on adaptive panel meshes in a time domain partially nonlinear model for ship motions. Ocean Engineering, 139, 169-183.
  • 14. Sengupta D., Datta R., Sen D. (2016): A simplified approach for computation of nonlinear ship loads and motions using a 3D time-domain panel method. Ocean Engineering, 117, 99-113.
  • 15. Shen L., Zhu R. C., Miao G. P., et al. (2007):. A practical numerical method for deep water time-domain Green function. Journal of Hydrodynamics, 22(3), 380-386.
  • 16. Singh S. P., Sen D. (2007): A comparative study on 3D wave load and pressure computations for different level of modelling of nonlinearities. Marine Structures, 20(1-2), 1-24.
  • 17. Wehausen J. V. (1971): The motion of floating bodies. Annual Review of Fluid Mechanics, 3, 237-268.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.