PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Applying isotope techniques and modeling to identify the nitrogen source in Goksu Delta

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Göksu Delta is an important wetland area in Turkey and has been declared a first-degree site and has been included in the Ramsar list. Agricultural activities continue for 12 months of the year due to the favorable climate in the delta and these activities are the most important income source for the people living in the region. Investigations to date have identified the presence of nitrogen pollutants in delta groundwater. However, studies have yet to be conducted on the source of nitrogen contaminants. This study has identified source(s) of nitrogen through the combined use of isotope methods and groundwater modeling.¹⁵N and ¹⁸O stable isotope analysis were done for identifying the source(s) of nitrogen pollution. We used a three-dimensional Visual MODFLOW model to simulate the alluvial aquifer around the delta. After establishing the groundwater fate and transport model (MT3DMS), we investigated the source of nitrate pollution by particle tracking analyses (MODPATH). The results of δ¹⁵N showed that nitrogen in delta groundwater was greatly affected by agricultural activities, but was mainly sourced from domestic wastewater. Similar to isotopic results with the particle tracking model, 5 years ago it was determined that nitrate ions came from domestic wastewater of Silifke city and surrounding settlements that lack wastewater treatment facilities.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3179-3195,fig.,ref.

Twórcy

autor
  • Department of Environmental Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
autor
  • Department of Environmental Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey

Bibliografia

  • 1. BHANDARI M.P. The role of international organization in addressing the climate change issues and creation of intergovernmental panel on climate change (IPCC). Adv Agr Environ Sci. 1 (1), 19, 2018.
  • 2. MIAO G., NOORMETS A., DOMEC J., TRETTIN C.C., SUN G., MCNULTY S.G., Implications in partitioning ecosystem respiration in a coastal plain forested wetland. Agr Forest Meteorol. 247, 343, 2017.
  • 3. RAMSAR CONVENTION SECRETARIAT. Ramsar Handbooks For The Wise Use Of Wetlands 4th Edition, Vol. 11, Gland Switzerland 2010.
  • 4. MA Z., YANG Y., LIAN X., JIANG Y., XI B., PENG X., YAN K. Identification of nitrate sources in groundwater using a stable isotope and 3deem in a landfill in Northeast China. Sci Total Environ. 563-564, 593, 2016.
  • 5. PAPATHEODOROU K., EVANGELIDIS K., NTOUROS K. Geomatics for environmental protection and resource management. J Environ Prot Ecol 18, 168, 2017.
  • 6. DEMİREL Z., ÖZER O., DABANLI S. Göksu Deltası’nın Tarım, Hayvancılık, Arazi Kullanıı İle İlgili 3 Boyutlu Haritalarının ve CBS’nin Oluşturulması (Creation of GIS and 3D Maps Relating to Land Use, Agriculture, Livestock in Göksu Delta), Bibad, 3 (2), 2010.
  • 7. COBANER M., YURTAL R., DOGAN A., MOTZ L. H. Three dimensional simulation of seawater intrusion in coastal aquifers: A case study in the Goksu Deltaic Plain. J Hydrol. 464-465, 262, 2012.
  • 8. DEMIREL Z., ÖZER O., ÖZPINAR Z. Investigation of groundwater pollution in a protected area in Turkey The Göksu Delta. GUJS. 24, 17, 2011.
  • 9. SEPA-Special Environmental Protection Agency. Göksu Delta Management Plan. Ankara, Turkey, 2009.
  • 10. KAÇAR B., KATKAT V. Gübreler ve gübreleme tekniği (fertilizers and fertilization techniques). Ankara, Turkey. Nobel Publication, 2014.
  • 11. LINDENBAUM J . Identification of sources of ammonium in groundwater using stable nitrogen and boron isotopes in Nam Du, Hanoi. Master’s thesis. Lund University. Swedish, 2012.
  • 12. FOLLETT R.F. Nitrogen management and ground water protection. Developments in Agricultural and Managed-Forest Ecology. Elsevier, 2012.
  • 13. BALAKRISHNAN P., SALEEM A., MALLIKARJUN N.D. Groundwater quality mapping using geographic information system (GIS): A case study of Gulbarga City, Karnataka, India. Afr. J. Environ. Sci. Technol. 5 (12), 1069, 2011.
  • 14. DIDAR-UL ISLAM S.M., BHUIYAN M.A.H., RUME T., AZAM G. Hydrogeochemical investigation of groundwater in shallow coastal aquifer of Khulna District, Bangladesh. Appl Water Sci. 7, 4219, 2017.
  • 15. KHOSHRAVESHA M., SEFIDKOUHIA M. A.G., ABBASPALANGIB J., MIRNASERIC M. Estimation of nitrate concentrations in well and spring water using ANFIS and SVM models (Case study: Golestan province). Journal of Applied Hydrology. 2 (2), 1, 2015.
  • 16. PIRAJNO F. Hydrothermal mineral deposits: principles and fundamental concepts for the exploration geologist. Springer Science & Business Media, 2012.
  • 17. MEYERS L.M.A., NAHLIK M., DEKEYSER E.S. Relationship between the natural abundance of soil nitrogen ısotope sand condition in North Dakota Wetlands. Ecol Indic 60, 394, 2016.
  • 18. VIANA I.G., BODE A. Stable nitrogen isotopes in coastal macroalgae: Geographic and anthropogenic variability. Sci Total Environ. 443, 887, 2013.
  • 19. WONG C.W.M., DUPREY N.N., BAKER D.M. New insights on the nitrogen footprint of a coastal megalopolis from coral-hosted symbiodinium δ¹⁵N. Environ. Sci. Technol. 51, 1981, 2017.
  • 20. DEEK A., EMEIS K., STRUCK U. Seasonal variations in nitrate isotope composition of three rivers draining into the North Sea. Biogeosciences Discuss., 7, 6051, 2010.
  • 21. WELDRICK C.K., JELINSKI D.E. Seasonal dynamics in a nearshore isotopic niche and spatial subsidies from multi-trophic aquaculture. Can J Fish Aquat Sci. 74 (9), 1411, 2017.
  • 22. IZQUIERDO-GOMEZ D., SANCHEZ-JEREZ P., BAYLE-SEMPERE J.T., LOADER N.J., GARCIA DE LEANIZ C. Effects of coastal fish farms on body size and isotope composition of wild penaeid prawn. Fish Res. 172, 50, 2015.
  • 23. FERTIG B., CARRUTHERS T.J.B., DENNISON W.C. Oyster δ¹⁵N as a bioindicator of potential wastewater and poultry farming impacts and degraded water quality in a subestuary of Chesapeake Bay. J COASTAL RES. 30 (5), 881. 2014.
  • 24. LASSAUQUE J., LEPOINT G., THIBAUT T., FRANCOUR P., MEINESZ A. Tracing sewageand natural freshwater input in a Northwest Mediterranean Bay: evidence obtained from isotopic ratios in marine organisms. Mar. Pollut. Bull. 60, 843, 2010.
  • 25. XU L., ZHANG M. Primary consumers as bio indicator of nutrient pollution in lake planktonic and benthic feed webs. Ecol Indic 14, 189, 2012.
  • 26. ROZIC P.Z., DOLENEC T., LOJEN S., KNIEWALD G., DOLENEC M. Using stable nitrogen isotopes in patella sp. to trace sewage-derived material in coastal ecosystems, Ecol Indic 36, 224, 2014.
  • 27. CZEKAJ J., JAKOBCZYK-KARPIERZ S., RUBIN H., SITEK S., WITKOWSKI A.J. Identification of nitrate sources in groundwater and potential impact on drinking water reservoir (Goczałkowice Reservoir, Poland). Phys Chem Earth. 94, 3, 2016.
  • 28. KENDALL C. Tracing nitrogen sources and cycling in catchments. In: Kendall, C., McDonnell, J.J. (Eds.), Isotope Tracers in Catchment Hydrology. Elsevier Science B.V., Amsterdam. 1998.
  • 29. BELLAMY A.R. Sources and ages of carbon and organic matter supporting macroinvertebrate production in temperate streams. PhD Thesis, Ohio State University, Graduate Program in Evolution, Ecology and Organismal Biology, 280, 2017.
  • 30. LAL R., STEWART B.A. Soil nitrogen uses and environmental impact. CRC Press, 380, 2018.
  • 31. TAMŠE S., MOZETIČ P., FRANCÉ J., OGRINC N. Stable isotopes as a tool for nitrogen source identification and cycling in the Gulf of Trieste (Northernadriatic). Cont Shelf Res 91, 145, 2014.
  • 32. ENGEL M.H., MACKO S.A. Organic Geochemistry: Principles and Applications. Springer Science & Business Media, 861, 2013.
  • 33. WALLACE J. Water-quality assessment of the principal valley-fill aquifers in the southern sanpete and central sevier valleys, sanpete county, Utah. Utah Geological Survey, 138, 2010.
  • 34. XUE Y., SONG J., ZHANG Y., KONG F., WEN M., ZHANG G. Nitrate pollution and preliminary source identification of surface water in a semi-arid river basin, using isotopic and hydrochemical approaches.Water 8, 1. 2016.
  • 35. VYSTAVNA Y., DIADIN D., GRYNENKO V., YAKOVLEV V., VERGELES Y., HUNEAU F., ROSSI P. M., HEJZLAR J., KNÖLLER K. Determination of dominant sources of nitrate contamination in transboundary (Russian Federation/Ukraine) catchment with heterogeneous land use. Environ Monit Assess 189, 509, 2017.
  • 36. MENG Z., YANG Y., QIN Z., HUANG L. Evaluating temporal and spatial variation in nitrogen sources along the lower reach of fenhe river (Shanxi Province, China) using stable isotope and hydrochemical tracers. Water 10, (231), 2, 2018.
  • 37. HOSONO T., TOKUNAGA T., KAGABU M., NAKATA H., ORISHIKIDA T., LIN I., SHIMADA J. The use of 15 N and 18 O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Res. 47, 2661, 2013.
  • 38. FENECH C., ROCK L., NOLAN K., TOBIN J., MORRISSEY A. The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: a review. Water Res. 46, 2023, 2012.
  • 39. HOSONO T., WANG C.-H., UMEZAWA Y., NAKANO T., ONODERA S., NAGATA T., YOSHIMIZU C., TAYASU I., TANIGUCHI M. Multiple isotope (H, O, N, S and Sr) approach elucidates complex pollution causes in the shallow groundwater of the Taipei urban area. J Hydrol. 379, 23, 2011.
  • 40. LI D., JIANG X., ZHENG B. Using ¹⁵N and ¹⁸O Signatures to Evaluate Nitrate Sources and Transformations in Four Inflowing Rivers, North of Taihu Lake. Water, 9 (345), 2, 2017.
  • 41. SEBILO M., MAYER B., NICOLARDOT B., PINAY G., MARIOTTIA A. Long-term fate of nitrate fertilizer in agricultural soils. Proc Natl Acad Sci. Nov 5; 110 (45), 18185, 2013.
  • 42. ZHANG Y., LI F., ZHANG Q., LI J., LIU Q. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes. Sci Total Environ 490, 213, 2014.
  • 43. SAVARD M.M., SOMERS G., SMIRNOFF A., PARADIS D., BOCHOVE E., LIAO S. Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination. J Hydrol 381, 134, 2010 .
  • 44. DEMIREL Z., ÖZER Z., ÖZER O. Investigation and modeling of water quality of Göksu River (Cleadnos) in an international protected area by using GIS. J. Geogr. Sci., 21 (3), 429, 2011.
  • 45. KARABULUT M. An examination of temporal changes in Göksu delta lakes using different remote sensing techniques. The Journal of International Social Research. 8 (37), 347, 2015.
  • 46. TÜRKMEN M., TÜRKMEN A., TEPE Y. Comparison of metals in tissues of fish from Paradeniz Lagoon in the coastal area of northern east Mediterranean. Bull Environ Contam Toxicol. 87 (4), 381, 2011 .
  • 47. ROSELLI L., STANCA E., LUDOVISI A., DURANTE G., SOUZA J.S.D., DURAL M., ALP T., BULENT S., GJONI V., GHINIS S., BASSET A. Multi-scale biodiverity patterns in phytoplankton from coastal lagoons: the Eastern Mediterranean. Transit. Waters Bull. 7 (2), 202, 2013.
  • 48. ALP M.T., FAKIOĞLU Y.E., ÖZBAY Ö., KOÇER M. A.T. A study on water quality and trophic state of Akgöl Lagoon (Mersin, Turkey), Aquat Ecosyst Health Manag, 19 (1), 58, 2016.
  • 49. WATER POLLUTION CONTROL REGULATIONS (WPCR). Number: 25687. Ministry of Environment and Forests, Ankara, 2018.
  • 50. US EPA (United States Environmental Protection Agency). National Primary Drinking Water Regulations. EPA 816-F-09-004. 2009.
  • 51. XING M., LIU W. Using dual isotopes to identify sources and transformations of nitrogen in water catchments with different land uses, Loess Plateau Of China. Environ Sci Pollut R 23, 388, 2016.
  • 52. NISI B., RACO B., DOTSIKA E. Groundwater Contamination Studies by Environmental Isotopes: A review. In: Scozzari A., Dotsika E. (eds) Threats to the Quality of Groundwater Resources. The Handbook of Environmental Chemistry, vol 40. Springer, Berlin, Heidelberg. 2014 .
  • 53. ZHOU Y., LI W. A review of regional groundwater flow modeling. Geosci Front. 8 (2), 205, 2011.
  • 54. AMIRABDOLLAHIAN M., DATTA B. Identification of contaminant source characteristics and monitoring network design in groundwater aquifers: an overview. Journal of Environmental Protection, 4 (5A), 26, 2013.
  • 55. GUPTA T., AGARWAL A.K., AGARWAL R.A., LABHSETWAR N.K. Environmental contaminants: measurement, modeling and control. Springer, 431, 2017.
  • 56. EL-ZEHAIRY A.A., LUBCZYNSKI M.W., GURWIN J. Interactions of artificial lakes with groundwater applying an integrated MODFLOW solution. Hydrogeol J. 26, 109, 2018.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2671efa0-0cc8-476d-96a1-69269a0bd60f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.