PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 77 | 1 |

Tytuł artykułu

Effects of Cornus mas L. and Morus rubra L. extracts on penicillin - induced epileptiform activity: an electrophysiological and biochemical study

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Traditionally, Morus rubra L. (Moraceae) (red mulberry) and Cornus mas L. (Cornacea) (cornelian cherry) fruits are eaten fresh and are also used in marmalades, juices, jam, natural dyes in Turkey and are believed to have beneficial effects in case of multiple health issues such as antipyretic, diarrhea and intestinal parasites. However, the effects of M. rubra and C. mas on epilepsy has not been known. This study evaluates the effects of M. rubra and C. mas extracts on penicillin‑induced epileptiform activity. Sixty Wistar rats randomly divided into ten groups (n=6): control, sham, penicillin, penicillin+M. rubra extract (2.5, 5, 10, 20 mg/kg) and penicillin+C. mas extract (2.5, 5, 10 mg/kg). Epileptiform activity was induced by using penicillin (500 IU, i.c.) and electrocorticogram records (150 min) were obtained. Also, biochemical analysis in blood samples were evaluated. According to the electrocorticogram analysis, the effective dose was detected as 10 mg/kg for both C. mas and M. rubra. This dose decreased the spike frequencies of convulsions while amplitude wasn’t changed by both substances. In erythrocyte studies, there were significant differences regarding nitric oxide in the control, sham and penicillin groups. There were significant differences regarding malondialdehyde in all groups. In the plasma, there were significant differences among groups regarding xanthine oxidase in the penicillin‑C. mas and penicillin‑M. rubra groups. There were differences regarding malondialdehyde in the penicillin‑C. mas and M. rubra‑C. mas groups. Both extracts reduced the frequency of epileptiform activity. After administration of the extracts malondialdehyde levels decreased also in both erythrocytes and plasma.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

77

Numer

1

Opis fizyczny

p.45-56,fig.,ref.

Twórcy

autor
  • Department of Pediatrics, Faculty of Medicine, Bozok University, Yozgat, Turkey
autor
  • Department of Biology, Faculty of Arts and Sciences, Bozok University, Yozgat, Turkey
autor
  • Department of Biology, Faculty of Arts and Sciences, Bozok University, Yozgat, Turkey
autor
  • Division of Child Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
autor
  • Department of Medical Physiology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
autor
  • Department of Horticulture, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
autor
  • Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
autor
  • Division of Child Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
autor
  • Department of Biostatistics and Medical Informatics, Faculty of Medicine, İzmir Katip Celebi University, İzmir, Turkey
autor
  • Division of Child Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey

Bibliografia

  • Ameer B, Weintraub RA, Johnson JV, Yost RA, Rouseff RL (1996) Flavanone absorption after naringin, hesperidin, and citrus administration. Clin Pharmacol Ther 60: 34–40.
  • Arhan E, Serdaroglu A, Ozturk B, Ozturk HS, Ozcelik A, Kurt N, Kutsal E, Sevinc N (2011) Effects of epilepsy and antiepileptic drugs on nitric oxide, lipid peroxidation and xanthine oxidase system in children with idiopathic epilepsy. Seizure 20: 138–142.
  • Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, Kato A, Nash RJ, Lee HS, Ryu KS (2001) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J Agric Food Chem 49: 4208–4213.
  • Ayyıldız  M, Coşkun Ş, Yıldırım  M, Agar E (2007) The effects of ascorbic acid on penicillin‑induced epileptiform activity in rats. Epilepsia 48: 1388–1395.
  • Ayyildiz  M, Yildirim  M, Agar E (2006) The effect of vitamin E on penicillin‑induced epileptiform activity in rats. Exp Brain Res 174: 109–113.
  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87: 1620–1624.
  • Bruce AJ, Baudry  M (1995) Oxygen free radicals in rat limbic structures after kainate‑induced seizures. Free Radic Biol Med 18: 993–1002.
  • Cockerell OC (1996) The prognosis of epilepsy. In: The Treatment of Epilepsy (Shorvon S, Dreifuss F, Fish D, Thomas D, Eds). Blackwell Science, Oxford, UK. p. 97–113.
  • Dawson TM, Dawson VL, Snyder SH (1992) A novel neuronal messenger molecule in brain: The free radical nitric oxide. Ann Neurol 32: 297–311.
  • Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A 88: 6368–6371.
  • Devi PU, Manocha A, Vohora D (2008) Seizures, antiepileptics, antioxidants and oxidative stress: an insight for researchers. Expert Opin Pharmacother 9: 3169–3177.
  • Dugo P, Mondello  L, Errante G, Zappia G, Dugo G (2001) Identification of anthocyanins in berries by narrow‑bore high‑performance liquid chromatography with electrospray ionization detection. J Agric Food Chem 49: 3987–3992.
  • Elliott AJ, Scheiber SA, Thomas C, Pardini RS (1992) Inhibition of glutathione reductase by flavonoids. A structure‑activity study. Biochem Pharmacol 44(8): 1603–1608.
  • Eraković V, Zupan G, Varljen J, Laginja J, Simonic A (2001) Altered activities of rat brain metabolic enzymes in electroconvulsive shock‑induced seizures. Epilepsia 42: 181–189.
  • Erol I, Alehan F, Aldemir D, Ogus E (2010) Increased vulnerability to oxidative stres in pediatric migraine patients. Pediatr Neurol 43: 21–24.
  • Fakir H, Korkmaz M, Guller B (2009) Medicinal plant diversity of Western Mediterranean Region in Turkey. J App Biol Sci 3(2): 30–40.
  • Francik R, Kryczyk J, Krośniak M, Berköz M, Sanocka I, Francik S (2014) The neuroprotective effect of cornus MAS on brain tissue of Wistar rats. ScientificWorldJournal 2014: 847368.
  • Hodnick WF, Bohmont CW, Capps C, Pardini RS (1987) Inhibition of the mitochondrial NADH‑oxidase (NADH‑coenzyme Q oxido‑reductase) enzyme system by flavonoids: a  structure‑activity study. Biochem Pharmacol 36(17): 2873–2874.
  • Iadecola C (1997) Bright and dark sides of NO in ischemic brain injury. Trends Neurosci 20: 132–139.
  • Iadecola C, Zhang, F, Xu X (1995) Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol 268: 286–292.
  • Ilhan A, Gurel A, Armutcu F, Kamisli S, Iraz M (2005) Antiepileptogenic and antioxidant effects of Nigella sativa oil against pentylenetetrazol‑induced kindling in mice. Neuropharmacology 49: 456–464.
  • Lee JS, Kim YR, Song IG, Ha SJ, Kim YE, Baek NI, Hong EK (2015) Cyanidin‑3‑glucoside isolated from mulberry fruit protects pancreatic β‑cells against oxidative stress‑induced apoptosis. Int J Mol Med 35(2): 405–412.
  • Lei SZ, Pan ZH, Aggarwal SK, Chen HS, Hartman J, Sucher NJ, Lipton SA (1992) Effect of nitric oxide production on the redox modulatory site of the NMDA receptor channel complex. Neuron 8: 1087–1099.
  • Lin S, Zhang G, Liao Y, Pan J, Gong D (2015) Dietary flavonoids as xanthine oxidase ınhibitors: structure‑affinity and structure‑activity relationships. J Agric Food Chem 63(35): 7784–7794.
  • Lipton SA, Choi YB, Pan ZH, Lei Sz, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stampler JS (1993) A redox‑based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso‑compounds. Nature 364: 626–632.
  • Moncada S, Lekieffre D, Arvin B, Meldrum B (1992) Effect of NO‑synthase inhibition on NMDA‑induced and ischaemia‑induced hippocampal lesions. Neuroreport 3: 530–532.
  • Nowicki JP, Duval D, Poignet H, Scatton B (1991) Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur J Pharmacol 204: 339–340.
  • Pecorelli A, Natrella F, Belmonte G, Miracco C, Cervellati F, Ciccoli  L, Mariottini A, Rocchi R, Vatti G, Bua A, Canitano R, Hayek J, Forman HJ, Valacchi G (2015) NADPH oxidase activation and 4‑hydroxy‑2‑nonenal/ aquaporin‑4 adducts as possible new players in oxidative neuronal damage presents in drug‑resistant epilepsy. Biochim Biophys Acta 1852: 507–519.
  • Per S, Tasdemir A, Yildirim  M, Ayyildiz  M, Ayyildiz N, Agar E (2013) The involvement of iNOS activity in the anticonvulsant effect of grape seed extract on penicilin‑induced epileptiform activity in rats. Acta Physiol Hung 100: 224–236.
  • Rauca C, Zerbe R, Jantze H (1999) Formation of free hydroxyl radicals after pentylenetetrazol‑induced seizure and kindling. Brain Res 847: 347–351.
  • Rice‑Evans CA, Miller NJ, Paganga G (1996) Structure‑antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20: 933–956.
  • Royes LFF, Fighera MR, Furian AF, Oliveira MS, Fiorenza NG, Petry JC, Coelho RC, Mello CF (2007) The role of nitric oxide on the convulsive behavior and oxidative stress induced by methylmalonate: an electroencephalographic and neurochemical study. Epilepsy Res 73: 228–237.
  • Seeram N, Schutzki R, Chandra A, Nair MG (2002) Characterization, quantification, and bioactivities of antocyanins in Cornus species. J Agric Food Chem 50: 2519–2523.
  • Sudha K, Rao AV, Rao A (2001) Oxidative stress and antioxidants in epilepsy. Clin Chim Acta 303: 19–24.
  • Tutkun E, Arslan G, Soslu R, Ayyildiz M, Agar E (2015) Long‑term ascorbic acid administration causes anticonvulsant activity during moderate and long‑duration swimming exercise in experimental epilepsy. Acta Neurobiol Exp (Wars) 75: 192–199.
  • Wallis RA, Panizzon K, Wasterlain CG (1992) Inhibition of nitric oxide synthase protects against hypoxic neuronal injury. Neuroreport 3: 645–648.
  • Xu X, Guo F, Cai X, Yang J, Zhao J, Min D, Wang Q, Hao  L, Cai J (2016) Aberrant changes of somatostatin and neuropeptide Y in brain of a genetic rat model for epilepsy: tremor rat. Acta Neurobiol Exp (Wars) 76: 165–175.
  • Yıldırım A, Aslan Ş, Ocak T, Yildirim S, Kara F, Sahin YN (2007) Travmalı Hastalarda Serum Paraoksonaz/Arilesteraz Aktiviteleri ve Malondialdehit Düzeyleri. Eurasian J Med 39: 85–88.
  • Yilmaz KU, Ercisli S, Zengin Y, Sengul  M, Kafkas E (2009a) Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico‑chemical properties. Food Chem 114: 408–412.
  • Yilmaz KU, Zengin Y, Ercisli S, Serce S, Gunduz K, Sengul  M, Asma BM (2009b) Some selected physico‑chemical characteristics of wild and cultivated blackberry fruits (Rubus fruticosus  L.) from Turkey. Rom Biotech Lett 14(1): 4152–4163.
  • Yoshida T, Limmroth V, Irikura K, Moskowitz MA (1994) The NOS inhibitor, 7‑nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab 14: 924–929.
  • Zhang ZG, Reif D, Macdonald J, Tang WX, Kamp DK, Gentile RJ, Shakespeare WC, Murray RJ, Chopp  M (1996) ARL 17477, a  potent and selective neuronal NOS inhibitor decreases infarct volume after transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 16: 599–604

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-26397afc-da0d-4a51-83ee-c8222fb0f4b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.