PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 69 | 3 |

Tytuł artykułu

Auxin effectively induces the formation of the secondary abscission zone in Bryophyllum calycinum Salisb. (Crassulaceae)

Treść / Zawartość

Warianty tytułu

PL
Auksyna efektywnie indukuje tworzenie się warstwy odcinającej u Bryophyllum calycinum Salisb. (Crassulaceae)

Języki publikacji

EN

Abstrakty

EN
We have found that auxin, indole-3-acetic acid (IAA) substantially induces the formation of the secondary abscission zone in stem and petiole explants and in decapitated stem and petiole after excision of blade in intact plants of Bryophyllum calycinum when IAA at a concentration of 0.1% as lanolin paste was applied in the middle of these organs. The secondary abscission zone was formed at a few mm above of the treatment with IAA, and senescence of the part above abscission zone was observed. IAA additionally applied on the top of explants or top of the dacapitated stem or the debladed petiole totally prevented the secondary abscission zone formation and senescence induced by IAA applied in the middle of these organs. Possible mechanisms of the formation of the secondary abscission zone are discussed in terms of the interaction of auxin and ethylene.
PL
W szeroko prowadzonych badaniach nad interakcją jasmonianów z auksyną w różnych procesach fizjologicznych wykazaliśmy, że auksyna IAA (kwas indolilo-3-octowy) indukuje tworzenie się wtórnej warstwy odcinającej w łodydze i ogonkach liściowych eksplantatów, w łodydze po dekapitacji i ogonkach liściowych po usunięciu blaszki liściowej naturalnie rosnących roślin B. calycinum, kiedy IAA w stężeniu 0.1% podano w paście lanolinowej pośrodku tych organów. W pracy szczegółowo omówiono możliwe mechanizmy tworzenia się wtórnej warstwy odcinającej indukowanej przez egzogennie podaną auksynę (w aspekcie interakcji auksyna–etylen) w różnego typu eksplantatach i po dekapitacji roślin B. calycinum.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

69

Numer

3

Opis fizyczny

Article 1660 [6p.], fig.,ref.

Twórcy

autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
autor
  • Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gauken-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
autor
  • Osaka Prefecture University, 1-4-22 Tsuzuyama-dai, Tondabayashi, Osaka 584-0086, Japan

Bibliografia

  • 1. Pang Y, Zhang J, Cao J, Yi SY, He XQ, Cui KM. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv. J Exp Bot. 2008;59:1341–1351. http://dx.doi.org/10.1093/jxb/ern041
  • 2. Yamaguchi M, Goué N, Igarashi H, Ohani M, Nakano Y, Mortimer JC, et al. VASCULARRELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiol. 2010;153:906–914. http://dx.doi.org/10.1104/pp.110.154013
  • 3. Reusche M, Thole K, Janz D, Truskina J, Rindfleisch S, Drübert C, et al. Verticillium infection triggers VASCULAR-RELATED NAC-DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. Plant Cell. 2012;24:3823–3837. http://dx.doi.org/10.1105/tpc.112.103374
  • 4. Pierik RLM. Induction of secondary abscission in apple pedicels in vitro. Physiol Plant. 1977;39:271–274. http://dx.doi.org/10.1111/j.1399-3054.1977.tb01882.x
  • 5. Pierik RLM. Hormonal regulation of secondary abscission in pear pedicels in vitro. Physiol Plant. 1980;48:5–8. http://dx.doi.org/10.1111/j.1399-3054.1980.tb03210.x
  • 6. Warren Wilson PM, Warren Wilson J, Addicott FT, McKenzie RH. Induced abscission sites in internodal explants of Impatiens sultani: a new system for studying positional control. Ann Bot. 1986;57:511–530.
  • 7. Warren Wilson J, Warren Wilson PM, Walker ES. Abscission sites in nodal explants of Impatiens sultani. Ann Bot. 1987;60:693–704.
  • 8. Warren Wilson J, Walker ES, Warren Wilson PM. The role of basipetal auxin transport in the positional control of abscission sites induced in Impatiens sultani stem explants. Ann Bot. 1988;62:487–495.
  • 9. Warren Wilson J, Palni LMS, Warren Wilson PM. Auxin concentration in nodes and internodes of Impatiens sultani. Ann Bot. 1999;83:285–292. http://dx.doi.org/10.1006/anbo.1998.0820
  • 10. Suzuki T. Shoot-tip abscission and adventitious abscission of internodes in mulberry (Morus alba). Physiol Plant. 1991;82:483–489. http://dx.doi.org/10.1111/j.1399-3054.1991.tb02936.x
  • 11. Plummer JA, Vine JH, Mullins MG. Regulation of stem abscission and callus growth in shoot explants of sweet orange [Citrus sinensis (L.) Osbeck]. Ann Bot. 1991;67:17–22.
  • 12. McManus MT, Thompson DS, Merriman C, Lyne L, Osborne DJ. Transdifferentiation of mature cortical cells to functional abscission cells in bean. Plant Physiol. 1998;116:891–899. http://dx.doi.org/10.1104/pp.116.3.891
  • 13. Simone F. Studies on abscission cell differentiation in Sambucus nigra and Phaseolus vulgaris [PhD thesis]. Palmerston North: Institute of Molecular Biosciences, Massey University; 2002.
  • 14. Addicott FT. Abscission. Berkeley, CA: University of California Press; 1982.
  • 15. Roberts JA, Whitelaw CA, Gonzalez-Carranza ZH, McManus MT. Cell separation processes in plants-models, mechanisms and manipulation. Ann Bot. 2000;86:223–235. http://dx.doi.org/10.1006/anbo.2000.1203
  • 16. McManus MT, Osborne DJ. Evidence for the preferential expression of particular polypeptides in leaf abscission zones of the bean Phaseolus vulgaris L. J Plant Physiol. 1990;136:391–397. http://dx.doi.org/10.1016/S0176-1617(11)80025-8
  • 17. McManus MT, Osborne DJ. Identification of polypeptides specific to rachis abscission zone cells of Sambucus nigra. Physiol Plant. 1990;79:471–478. http://dx.doi.org/10.1111/j.1399-3054.1990.tb02105.x
  • 18. McManus MT, Osborne DJ. Identification and characterization of an ionically-bound cell wall glycoprotein expressed preferentially in the leaf rachis abscission zone of Sambucus nigra L. J Plant Physiol. 1991;138:63–67. http://dx.doi.org/10.1016/S0176-1617(11)80731-5
  • 19. Jin X. The role of auxin in abscission of organs and tissues [PhD thesis]. Umeå: Department of Forest Genetics and Plant Physiology, Faculty of Forest Sciences, Swedish University of Agricultural Sciences; 2015.
  • 20. Saniewski M, Ueda J, Miyamoto K. Methyl jasmonate induces the formation of secondary abscission zone in stem of Bryophyllum calycinum Salisb. Acta Physiol Plant. 2000;22:17–23. http://dx.doi.org/10.1007/s11738-000-0003-8
  • 21. Hou K, Wu W, Gan SS. SAUR36, a SMALL AUXIN UP RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiol. 2013;161:1002–1009. http://dx.doi.org/10.1104/pp.112.212787
  • 22. Kan BG, Newcomb W, Burg SP. Mechanism of auxin-induced ethylene production. Plant Physiol. 1971;47:504–509. http://dx.doi.org/10.1104/pp.47.4.504
  • 23. Hansen H, Grossmann K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol. 2000;124:1437–1448. http://dx.doi.org/10.1104/pp.124.3.1437
  • 24. Horton RF. The regulation of stem abscission in succulents. In: Pilet PE, editor. Abstract: 9th International Conference on Plant Growth Substances; 1976 Aug 30 – Sep 4; Lausanne, Switzerland. Lausanne: University of Lausanne; 1976. p. 152–153.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-260f04f0-7066-41ce-80dd-87d84167e049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.