Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Dynamics of Fagus sylvatica L. necrotization under different pollutant load conditions

Warianty tytułu
Języki publikacji
The potential impact of acidic fluorine type of pollutants on the dynamics of European beech (Fagus sylvatica L.) stem bark and crown disease was investigated between 2004 (2007) and 2014 in three mature beech stands in Central Europe. The localities were 1.5 km, 7 km and 18 km from the pollution source: an aluminium plant. A decrease of necrotic disease with the increasing distance from the pollution source was revealed. Necrotization was highest nearest to the pollution source. The significance of the impact of necrotic disease was confirmed for the 2nd and 3rd tree classes. Necrotization was quantified using the indices of stem necrotization (ISN), crown necrotization (ICN) and necrotization of whole tree (IWTN). Over the period 2004 (2007)–2014, the values of ISN, ICN and IWTN decreased at all three localities. Significant positive relationships were found between the necrotization of the crown and stem of the same tree at all localities (Spearman’s correlation analyses R = 0.764; 0.597 and 0.755, P = 0.001; 0.01 and 0.001). Accordingly, the trees suffered from the necrotic damage at all parts in relation to their current health state.
Słowa kluczowe
Opis fizyczny
  • Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
  • Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
  • 1. MIHÁL I., CICÁK A., TSAKOV H. Beech (Fagus sylvatica L.) bark necrotic damage as a serious phytopathological problem in Central and South-eastern Europe. J. For. Sci. 61, 7, 2015.
  • 2. GIENCKE L.M., DOVČIAK M., MOUNTRAKIS G., CALE J.A., MITCHELL M.J. Beech bark disease: spatial patterns of thicket formation and disease spread in an aftermath forest in the north-eastern United States. Can. J. For. Res. 44, 1042, 2014.
  • 3. CALE J.A., LETKOWSKI S.K., TEALE S.A., CASTELLO J.D. Beech bark disease: an evaluation of the predisposition hypothesis in an aftermath forest. Forest Pathol. 42, 52, 2012.
  • 4. HECHT U., KOHNLE U., NILL M., GRÜNER J., METZLER B. Bark wounds caused by felling are more susceptible to discoloration and decay than wounds caused by extraction in European beech. Ann. For. Sci. 72, 731, 2015.
  • 5. ŠPULÁK O., SOUČEK J. The Sibyla model and development of beech forests affected by air pollution. Centr. Eur. J. Biol. 5, 371, 2010.
  • 6. HORNTVEDT R. Accumulation of airborne fluorides in forest trees and vegetation. Eur. J. For. Pathol. 27, 73, 1997.
  • 7. GARCÍA-GIL J.C., KOBZA J., SOLER-ROVINA R., JAVOREKOVÁ S. Soil microbial and enzyme activities response to pollution near aluminium smelter. Clean – Soil Air Water 41, 485, 2013.
  • 8. CUSKE M., KARCZEWSKA A., GAŁKA B., MATYJA K. Would forest litter cause a risk if increased copper solubility and toxicity in polluted soils remediated via phytostabilization? Pol. J. Environ. Stud. 26, 419, 2017.
  • 9. ŚWIERKOSZ K., RECZYŃSKA K., KURAS I. Increasing area of deciduous forest communities (Querco-Fagetea Class) as an unintended effect of regular forestry management – a study from Central Europe. Pol. J. Environ. Stud. 26, 323, 2017.
  • 10. CICÁK A., MIHÁL I., TSAKOV H., PETKOV P. Methods of a complex evaluation of the necrotic disease of beech. J. For. Sci. 53, 460, 2007.
  • 11. CICÁK A., MIHÁL I. Development of beech necrotic disease in the growing phase of maturing stand under influence of immission impact. J. For. Sci. 51, 101, 2005.
  • 12. MIHÁL I., CICÁK A. Comparison of the status of beech necrotic disease at the locality Hiencová (Stolické vrchy Mts). Reussia 4, 29, 2007. [In Slovak].
  • 13. RAČKO V., MIŠÍKOVÁ O. Formation of barrier zones of beech (Fagus sylvatica L.) inducted by injury. Acta Fac. Xylol. 57, 5, 2015 [In Slovak].
  • 14. JARČUŠKA B., MIHÁL I., CICÁK A., TSAKOV H. Beech bark necrosis: partitioning the environmental and spatial distribution of the damage severity in Central and South-Eastern Europe. Ann. For. Res. 56, 317, 2013.
  • 15. ŠTEFANČÍK I. A comparison with different tending variants in beech stands by the crown thinning and from the view of their quantitative and qualitative development. Centr. Eur. For. J. 63, 10, 2017.
  • 16. RAČKO V., MIŠÍKOVÁ O. Formation of barrier zones of beech (Fagus sylvatica L.) inducted by injury. Acta Fac. Xylol. Zvolen. 57, 5, 2015. [In Slovak].
  • 17. MIŠÍKOVÁ O., MIHÁL I., RAČKO V. Alterations in wood and bark structure of apple tree (Malus domestica) caused by Neonectria ditissima fungus. Acta Fac. Xylol. Zvolen. 60, 5, 2018.
  • 18. JUNG T., VETTRAINO A.M., CECH T.L., VANNINI A. The impact of invasive Phytophthora species on European forests. In: Lamour K. (ed.), Phytophthora: A Global Perspective. CABI, Wallingford, UK, 166, 2013.
  • 19. ORLIKOWSKI L.B., OSZAKO T., SZKUTA G. First record of Phytophthora spp. associated with the decline ofEuropean beech stands in south-west Poland. Phytopathol. Polonica 42, 37, 2006.
  • 20. CICÁK A., MIHÁL I. Health status and mycoflora of unmixed beech stand in areas with different immission load. Lesn. Čas. – For. J. 42, 145, 1996 [In Slovak].
  • 21. DITMAROVÁ Ľ., KMEŤ J. Physiological and biochemical aspects of stress impact of beech samplings growing under varying site conditions. Biologia (Bratislava) 57, 533, 2002.
  • 22. JAMNICKÁ G., BUČINOVÁ K., HAVRANOVÁ I., URBAN A. Current state of mineral nutrition and risk elements in a beech ecosystem situated near the aluminium smelter in Žiar nad Hronom, Central Slovakia. For. Ecol. Manage. 248, 26, 2007.
  • 23. KOBZA J., GAŠOVÁ K. Soil Monitoring System as a Basic Tool for Protection of Soils and Sustainable Land Use in Slovakia. J. Agric. Sci. Technol. A4, 504, 2014.
  • 24. ŠTEFANČÍK I., MIHÁL I. Effect of immission load on forest stands in the Žiarska kotlina basin. Čistota ovzdušia 23, 7, 1991 [In Slovak].
  • 25. KUKLA J., JANÍK R., SCHIEBER B., KELLEROVÁ D., BUBLINEC E., BIČÁROVÁ S. Immission-load-related dynamics of S-SO42- in precipitation and in lysimetric solutions penetrating through beech ecosystems. Folia Oecol. 44, 96, 2017.
  • 26. GAŠOVÁ K., KUKLOVÁ K., KUKLA J. Contents of nutrients and arsenic in litterfall and surface humus in mature nudal beech stands subjected to different emissionimmission loads. Folia Oecol. 44, 11, 2017.
  • 27. ŠTEFANČÍK I., BOŠEĽA M. An influence of different thinning methods on qualitative wood production of European beech (Fagus sylvatica L.) on two euthropic sites in the Western Carpathians. J. For. Sci. 60, 406, 2014.
  • 28. BARNA M. Process of twig growth of beech (Fagus sylvatica L.) of dominant and codominant trees after regeneration cutting. Ekológia (Bratislava) 18, 233, 1999.
  • 29. BARNA M., Schieber B., Cicák A. Effect of postcutting changes in site conditions on the morphology and phenology of naturally regenerated beech seedlings (Fagus sylvatica L.). Pol. J. Ecol. 57, 461, 2009.
  • 30. SEIDEL D., HOFFMANN N., EHBRECHT M., JUCHHEIM J., AMMER CH. How neighborhood affects tree diameter increment – New insights from terrestrial laser scanning and some methodical considerations. For. Ecol. Manage. 336, 119, 2015.
  • 31. CICÁK A., MIHÁL I. Bark necrosis index of beech stems. Lesnictví – Forestry 44, 474, 1998 [In Slovak].
  • 32. ZAR J. H. Biostatistical Analysis. Prentice Hall, New Jersey, 663, 1999.
  • 33. PERSIANI A.M., LOMBARDI F., LUNGHINI D., GRANITO V.M., TOGNETTI R., MAGGI O., PIOLI S., MARCHETTI M. Stand structure and deadwood amount influences saproxylic fungal biodiversity in Mediterranean mountain unmanaged forests. iForest 9, 115, 2016.
  • 34. LUCHI N., CAPRETTI P., FEDUCCI M., VANNINI A., CECCARELLI B., VETTRAINO A.M. Latent infection of Biscogniauxia nummularia in Fagus sylvatica: a possible bioindicator of beech health conditions. IForest, 9, 49, 2015.
  • 35. SAMEC P., FORMÁNEK P. Microbiology of forest soils. Lesn. Práce. 126, 2011 [In Czech].
  • 36. CICÁK A., KELLEROVÁ D., KULFAN J., MIHÁL I. Air pollution – harmful factor, In: Barna M., Kulfan J., Bublinec E. (eds), Beech and Beech Ecosystems of Slovakia. Veda, Bratislava, 2011. [In Slovak].
  • 37. MIHÁL I., BLANÁR D., GLEJDURA S. Enhancing knowlegde of mycoflora (Myxomycota, Zygomycota, Ascomycota, Basidiomycota) in oak-hornbeam forests in the vicinity of the magnesite plants of Lubeník and Jelšava (Central Slovakia). Thaiszia – J. Bot. 25, 121, 2015.
  • 38. BLANÁR D., MIHÁL I., UJHÁZY K., GUTTOVÁ A. Impact of magnesite immissions on the species composition of oak-hornbeam forests. Bull. Slov. Bot. Spol., 38 (1), 127, 2016 [In Slovak].
  • 39. BRUNNER I., SPERISEN C. Aluminium exclusion and aluminium tolerance in woody plants. Front. Plant Sci. 4, 172, 12, 2013.
  • 40. CICÁK A., MIHÁL I. Current state of beech bark necrotic disease in Southern Poland. J. For. Sci. 54, 459, 2008.
  • 41. CICÁK A., MIHÁL I., TSAKOV H., PETKOV P. Methods of complex evaluation of the necrotic disease of beech. J. For. Sci. 53, 642, 2007.
  • 42. MAB STRATEGY. In: [online] biosphere-programme/strategies-and-actionplans/new-mab-strategy-and-action-plan 2015-2025, (access 05. 05. 2015)
  • 43. MIHÁL I., ČERNECKÁ Ľ. Structure of harvestmen (Arachnida, Opiliones) communities in different, anthropically disturbed beech ecosystems (Western Carpathians, Slovakia). Vestnik zoologii, 51, 259, 2017
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.