Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 3 |

Tytuł artykułu

The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach

Warianty tytułu

Języki publikacji



Protein glycation is initiated by a nucleophilic addition reaction between the free amino group from a protein, lipid or nucleic acid and the carbonyl group of a reducing sugar. This reaction forms a reversible Schiff base, which rearranges over a period of days to produce ketoamine or Amadori products. The Amadori products undergo dehydration and rearrangements and develop a cross-link between adjacent proteins, giving rise to protein aggregation or advanced glycation end products (AGEs). A number of studies have shown that glycation induces the formation of the β-sheet structure in β-amyloid protein, α-synuclein, transthyretin (TTR), copper-zinc superoxide dismutase 1 (Cu, Zn-SOD-1), and prion protein. Aggregation of the β-sheet structure in each case creates fibrillar structures, respectively causing Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, familial amyloid polyneuropathy, and prion disease. It has been suggested that oligomeric species of glycated α-synuclein and prion are more toxic than fibrils. This review focuses on the pathway of AGE formation, the synthesis of different types of AGE, and the molecular mechanisms by which glycation causes various types of neurodegenerative disease. It discusses several new therapeutic approaches that have been applied to treat these devastating disorders, including the use of various synthetic and naturally occurring inhibitors. Modulation of the AGE-RAGE axis is now considered promising in the prevention of neurodegenerative diseases. Additionally, the review covers several defense enzymes and proteins in the human body that are important anti-glycating systems acting to prevent the development of neurodegenerative diseases.








Opis fizyczny



  • Distributed Information Sub Center, Aligarh Muslim University, Aligarh 202 002, India
  • Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India
  • Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India


  • 1.Forbes, J.M., Cooper, M.E., Oldfield, M.D. and Thomas, M.C. Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol. 14 (2003) 254258.
  • 2. Ahmed, N. Advanced glycation end products-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 67 (2005) 321.
  • 3. Ulrich, P. and Cerami, A. Protein glycation, diabetes and aging. Recent Prog. Horm. Res. 56 (2001) 121.
  • 4. Baynes, J.W. and Thorpe, S.R. Role of oxidative stress in diabetic complications. a new perspective on an old paradigm. Diabetes 48 (1999) 19.
  • 5. Chellan, P. and Nagaraj, R.H. Early glycation products produce pentosidine cross-links on native proteins. Novel mechanism of pentosidine formation and propagation of glycation. J. Biol. Chem. 276 (2001) 3895903.
  • 6. Stitt, A., Gardiner, T.A., Alderson, N.L., Canning, P., Frizzell, N., Duff, N., Boyle, C., Januszewski, A.S., Chachich, M., Baynes, J.W. and Thorpe, S.R. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51 (2002) 28262832.
  • 7. Thornalley, P.J. and Minhas, H.S. Rapid hydrolysis and slow alpha, betadicarbonyl cleavage of an agent proposed to cleave glucose-derived protein cross-links. Biochem. Pharmacol. 57 (1999) 303307.
  • 8. Horie, K., Miyata, T., Yasuda, T., Takeda, A., Yasuda, Y., Maeda, K., Sobue, G. and Kurokawa, K. Immunohistochemical localization of advanced glycation end products, pentosidine, and carboxymethyllysine in lipofuscin pigments of Alzheimer’s disease and aged neurons. Biochem. Biophys. Res. Commun. 236 (1997) 327330.
  • 9. Takeda, A., Yasuda, T., Miyata, T., Goto, Y., Wakai, M., Watanabe, M., Yasuda, Y., Horie, K. Inagaki, T., Doyu, M., Maeda, K. and Sobue, G. Advanced glycation end products colocalized with astrocytes and microglial cells in Alzheimer’s disease brain. Acta Neuropathol. 95 (1998) 555558.
  • 10. Castellani, R.J., Harris, P.L., Sayre, L.M., Fujii, J., Taniguchi, N., Vitek, M.P., Founds, H., Atwood, C.S., Perry, G. and Smith, M.A. Active glycation in neurofibrillary pathology of Alzheimer’s disease: N (epsilon)- (Carboxymethyl) lysine and hexitol-lysine. Free Radic. Biol. Med. 31 (2001) 175180.
  • 11. Obayashi, H., Nakano, K., Shigeta, H., Yamaguchi, M., Yoshimori, K., Fukui, M., Fujii, M., Kitagawa, Y., Nakamura, N., Nakamura, K., Nakazawa, Y., Ienaga, K., Ohta, M., Nishimura, M., Fukui, I. and Kondo, M. Formation of crossline as a fluorescent advanced glycation end product in vitro and in vivo. Biochem. Biophys. Res. Commun. 226 (1996) 3741.
  • 12. Reddy, S., Bichler, J., Wells-Knecht, J., Thorpe, S.R. and Baynes, J.W. N epsilon-(carboxymethyl) lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 34 (1995) 1087210878.
  • 13. Frye, E.B., Degenhardt, T.P., Thorpe, S.R. and Baynes, J.W. Role of the Maillard reaction in aging of tissue proteins. J. Biol. Chem. 273 (1998) 1871418719.
  • 14. Miyata, T., Ueda, Y., Yamada, Y., Izuhara, Y., Wada, T., Jadoul, M., Saito, A., Kurokawa, K. and van Ypersele de Strihou, C. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. J. Am. Soc. Nephrol. 9 (1998) 23492356.
  • 15. Miyata, T., van Ypersele de Strihou, C., Kurokawa, K. and Baynes, J.W. Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long term uremic complications. Kidney Int. 55 (1999) 389399.
  • 16. Kaneko, M., Bucciarelli, L., Hwang, Y.C., Lee, L., Yan, S.F., Schmidt, A.M. and Ramasamy, R. Aldose reductase and AGE-RAGE pathways: key players in myocardial ischemic injury. Ann. N. Y. Acad. Sci. 1043 (2005) 702709.
  • 17. Vlassara, H. and Palace, M.R. Diabetes and advanced glycation end products. J. Intern. Med. 251 (2002) 87101.
  • 18. Rabbani, G., Ahmad, E., Zaidi, N. and Khan, R.H. pH-dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white. Cell Biochem. Biophys. 61 (2011) 551560.
  • 19. Rabbani, G., Ahmad, E., Zaidi, N., Fatima, S. and Khan, R.H. pH induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochem. Biophys. 62 (2012) 487499.
  • 20. Rabbani, G., Kaur, J., Ahmad, E., Khan, R.H. and Jain, S.K. Structural characteristics of thermostable immunogenic outer membrane protein from Salmonella enterica serovar Typhi (S. Typhi). Appl. Microbiol. Biotechnol. 98 (2014) 25332543.
  • 21. Neeper, M., Schmidt, A.M., Brett, J., Yan, S.D., Wang, F., Pan, Y.C., Elliston, K., Stern, D. and Shaw, A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267 (1992) 1499815004.
  • 22. el Khoury, J., Thomas, C.A., Loike, J.D., Hickman, S.E., Cao, L. and Silverstein, S.C. Macrophages adhere to glucose-modified basement membrane collagen IV via their scavenger receptors. J. Biol. Chem. 269 (1994) 1019710200.
  • 23. Vlassara, H., Li, Y.M., Imani, F., Wojciechowicz, D., Yang, Z., Liu, F.T. and Cerami, A. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGEreceptor complex. Mol. Med. 1 (1995) 634646.
  • 24. Li, Y.M., Mitsuhashi, T., Wojciechowicz, D., Shimizu, N., Li, J., Stitt, A., He, C. Banerjee, D. and Vlassara, H. Molecular identity and cellular distribution of advanced glycation end product receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc. Natl. Acad. Sci. USA 93 (1996) 1104711052.
  • 25. Ohgami, N., Nagai, R., Ikemoto, M., Arai, H., Miyazaki, A., Hakamata, H., Horiuchi, S. and Nakayama, H. CD36 serves as a receptor for advanced glycation end products (AGE). J. Diabet. Complicat. 16 (2002) 5659.
  • 26. Schmidt, A.M., Yan, S.D., Yan, S.F. and Stern, D.M. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 108 (2001) 949955.
  • 27. Chen, X., Walker, D.G., Schmidt, A.M., Arancio, O., Lue, L.F. and Yan, S.D. RAGE: a potential target for Aβ-mediated cellular perturbation in Alzheimer’s disease. Curr. Mol. Med. 7 (2007) 735742.
  • 28. Grossman, H., Bergmann, C. and Parker, S. Dementia: a brief review. Mt. Sinai J. Med. 73 (2006) 985992.
  • 29. Campion, D., Dumanchin, C., Hannequin, D., Dubois, B., Belliard, S., Puel, M., Thomas-Anterion, C., Michon, A., Martin, C., Charbonnier, F., Raux, G., Camuzat, A., Penet, C., Mesnage, V., Martinez, M., Clerget-Darpoux, F., Brice, A. and Frebourg, T. Early-onset autosomal dominant Alzheimer’s disease: prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet. 65 (1999) 664670.
  • 30. Rademakers, R. and Rovelet-Lecrux, A. Recent insights into the molecular genetics of dementia. Trends Neurosci. 32 (2009) 4546.
  • 31. Obrenovich, M.E. and Monnier, V.M. Glycation stimulates amyloid formation. Sci. Aging Knowledge Environ. 2 (2004) pe3.
  • 32. Munch, G., Schicktanz, D., Behme, A., Gerlach, M., Riederer, P., Palm, D. and Schinzel, R. Amino acid specificity of glycation and protein-AGE crosslinking reactivities determined with a dipeptide SPOT library. Nat. Biotechnol. 17 (1999) 10061010.
  • 33. Wong, A., Luth, H.J., Deuther-Conrad, W., Dukic-Stefanovic, S., GasicMilenkovic, J., Arendt, T. and Munch, G. Advanced glycation end products co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res. 920 (2001) 3240.
  • 34. Reddy, V.P., Obrenovich, M.E., Atwood, C.S., Perry, G. and Smith, M.A. Involvement of Maillard reactions in Alzheimer’s disease. Neurotox. Res. 4 (2002) 191209.
  • 35. Vitek, M.P., Bhattacharya, K., Glendening, J.M., Stopa, E., Vlassara, H., Bucala, R., Manogue, K. and Cerami, A. Advanced glycation end products contribute to amyloidosis in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 91 (1994) 47664770.
  • 36. Smith, M.A., Taneda, S., Richey, P.L., Miyata, S., Yan, S.D., Stern, D., Sayre, L.M., Monnier, V.M. and Perry, G. Advanced Maillard reaction end products are associated with Alzheimer’s disease pathology. Proc. Natl. Acad. Sci. USA 91 (1994) 57105714.
  • 37. Mattson, M.P., Carney, J.W. and Butterfield, D.A. A tombstone in Alzheimer’s? Nature 373 (1995) 481.
  • 38. Smith, M.A., Sayre, L.M., Vitek, M.P., Monnier, V.M. and Perry, G. Early AGEing and Alzheimer’s. Nature 374 (1995) 316.
  • 39. Li, J.J., Dickson, D., Hof, P.R. and Vlassara, H. Receptors for advanced glycosylation end products in human brain: role in brain homeostasis. Mol. Med. 4 (1998) 4660.
  • 40. Sasaki, N., Toki, S., Chowei, H., Saito, T., Nakano, N., Hayashi, Y., Takeuchi, M. and Makita, Z. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res. 888 (2001) 256262.
  • 41. Coker L.H. and Wagenknecht, L.E. Advanced glycation end products, diabetes, and the brain. Neurology 77 (2011) 13261327.
  • 42. Munch, G., Mayer, S., Michaelis, J., Hipkiss, A.R., Riederer, P., Muller, R., Neumann, A., Schinzel, R. and Cunningham, A.M. Influence of advanced glycation end products and AGE-inhibitors on nucleation-dependent polymerization of beta-amyloid peptide. Biochim. Biophys. Acta 1360 (1997) 1729.
  • 43. Li, X.H., Du , L.L., Cheng , X.S., Jiang, X., Zhang, Y., Lv, B.L., Liu , R., Wang, J.Z. and Zhou, X.W. Glycation exacerbates the neuronal toxicity of β-amyloid. Cell Death Dis. 4 (2013) e673.
  • 44. Ko, S.Y., Lin, Y.P., Lin, Y.S. and Chang, S.S. Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radic. Biol. Med. 49 (2010) 474480.
  • 45. Ledesma, M.D., Bonay, P. and Avila, J. Tau protein from Alzheimer’s disease patients is glycated at its tubulin-binding domain. J. Neurochem. 65 (1995) 16581664.
  • 46. Li, X. H., Lv, B. L., Xie, J. Z., Liu, J. X., Zhou, W. and Wang, J. Z. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGEmediated GSK-3 activation. Neurobiol. Aging 33 (2012) 400410.
  • 47. Chen, K., Maley, J. and Yu, P.H. Potential implications of endogenous aldehydes in β-amyloid misfolding oligomerization and fibrillogenesis. J. Neurochem. 99 (2006) 14131424.
  • 48. Jack, M.M., Ryals, J.M. and Wright, D.E. Protection from diabetes-induced peripheral sensory neuropathy - A role for elevated glyoxalase I? Exp. Neurol. 234 (2012) 6269.
  • 49. Kuhla, B., Boeck, K., Schmidt, A., Ogunladem, V., Arendt, T., Munch, G. and Luth, H.J. Age-and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer’s disease brains. Neurobiol. Aging 28 (2007) 2941.
  • 50. Butterfield, D.A., Hardas, S.S. and Lange, M.L. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: many pathways to neurodegeneration. J. Alzheimers Dis. 20 (2010) 369393.
  • 51. Sato, T., Shimogaito, N., Wu, X., Kikuchi, S., Yamagishi, S. and Takeuchi, M. Toxic advanced glycation end products (TAGE) theory in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 21 (2006) 197208.
  • 52. Takeuchi, M., Kikuchi, S., Sasaki, N., Suzuki, T., Watai, T., Iwaki, M., Bucala, R. and Yamagishi, S. Involvement of advanced glycation endproducts (AGEs) in Alzheimer’s disease. Curr. Alzheimer Res. 1 (2004) 3946.
  • 53. Guerrero, E., Vasudevaraju, P., Hegde, M.L., Britton, G. B. and Rao, K.S. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson’s disease. Mol. Neurobiol. 47 (2013) 525536.
  • 54. Defebvre, L. Parkinson’s disease: role of genetic and environment factors. Involvement in everyday clinical practice. Rev. Neurol (Paris) 166 (2010) 764769.
  • 55. Nuytemans, K., Theuns, J., Cruts, M. and Van Broeckhoven, C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum. Mutat. 31 (2010) 763780.
  • 56. Martin, I., Dawson, V.L. and Dawson, T.M. The impact of genetic research on our understanding of Parkinson’s disease. Prog. Brain. Res. 183 (2010) 2141.
  • 57. Martin, I., Dawson, V.L. and Dawson, T.M. Recent advances in the genetics of Parkinson’s disease. Annu. Rev. Genomics Hum. Genet. 12 (2011) 301325.
  • 58. Hegde, M.L., Vasudevaraju P. and Rao, K.J. DNA induced folding/fibrillation of alpha-synuclein: new insights in Parkinson’s disease. Front. Biosci. 15 (2010) 418436.
  • 59. Hegde, M.L. and Jagannatha Rao, K.S. Challenges and complexities of alpha-synuclein toxicity: new postulates in unfolding the mystery associated with Parkinson’s disease. Arch. Biochem. Biophys. 418 (2003) 169178.
  • 60. Vicente Miranda, H. and Outeiro, T.F. The sour side of neurodegenerative disorders: the effects of protein glycation. J. Pathol. 221 (2010) 1325.
  • 61. Padmaraju, V., Bhaskar, J.J., Prasada Rao, U.J., Salimath, P.V. and Rao, K.S. Role of advanced glycation on aggregation and DNA binding properties of alpha-synuclein. J. Alzheimers Dis. 24 (2011) 211221.
  • 62. Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D., Housman, D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA 96 (1999) 1140411409.
  • 63. Choonara, Y.E., Pillay, V., du Toit, L.C. Modi, G., Naidoo, D., Ndesendo, V.M. and Sibambo, S.R. Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int. J. Mol. Sci. 10 (2009) 25102557.
  • 64. Ve´ronique, V.B., Hussein, D., Patrick, A.D., Edor, K., Rouleau Guy, A.R. and Paul, V.N. TDP-43, protein aggregation, and amyotrophic lateral sclerosis. US Neurology 5 (2010) 3538.
  • 65. Gros-Louis, F., Gaspar, C. and Rouleau, G.A. Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim. Biophys. Acta 1762 (2006) 956972.
  • 66. Chou, S.M., Wang, H.S., Taniguchi, A. and Bucala, R. Advanced glycation end products in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol. Med. 4 (1998) 324332.
  • 67. Shibata, N., Hirano, A., Hedley-Whyte, E.T., Dal Canto, M.C., Nagai, R., Uchida, K., Horiuchi, S., Kawaguchi, M., Yamamoto, T. and Kobayashi, M. Selective formation of certain advanced glycation end products in spinal cord astrocytes of humans and mice with superoxide dismutase-1 mutation. Acta Neuropathol. 104 (2002) 17178.
  • 68. Iłzecka, J. Serum-soluble receptor for advanced glycation end product levels in patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 120 (2009) 119122.
  • 69. Sakaguchi, T., Yan, S.F., Yan, S.D., Belov, D., Rong, L.L., Sousa, M., Andrassy, M., Marso, S.P., Duda, S., Arnold, B., Liliensiek, B., Nawroth, P.P., Stern , D.M. Schmidt, A.M. and Naka, Y. Central role of RAGE-dependent neointimal expansion in arterial restenosis J. Clin. Invest. 11 (2003) 959972.
  • 70. Takamiya, R., Takahashi, M., Myint, T., Park, Y.S., Miyazawa, N., Endo, T., Fujiwara, N., Sakiyama, H., Misonou, Y., Miyamot, Y., Fujii, J. and Taniguchi, N. Glycation proceeds faster in mutated Cu, Zn superoxide dismutases related to familial amyotrophic lateral sclerosis. FASEB J. 17 (2003) 938940.
  • 71. Kaufmann, E., Boehm, B.O., Süssmuth, S.D., Kientsch-Engel, R., Sperfeld, A.C., Ludolph, A. and Tumani, H. The advanced glycation end product N epsilon- (carboxymethyl) lysine level is elevated in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Neurosci. Lett. 371 (2004) 226229.
  • 72. Andrade, C.A. Peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 75 (1952) 408427.
  • 73. Saraiva, M.J., Birken, S., Costa, P.P. and Goodman, D.S. Amyloid fibril protein in familial amyloidotic polyneuropathy, Portuguese type. Definition of molecular abnormality in transthyretin (prealbumin). J. Clin. Invest. 74 (1984) 104119.
  • 74. da Costa, G., Gomes, R.A., Guerreiro, A., Mateus, É., Monteiro, E., Barroso, E., Coelho, A.V., Freire, A.P. and Cordeiro, C. Beyond genetic factors in familial amyloidotic polyneuropathy: protein glycation and the loss of fibrinogen’s chaperone activity. PLoS One 6 (2011) e24850.
  • 75. Matsunaga, N., Anan, I., Forsgren, S., Nagai, R., Rosenberg, P., Horiuchi, S., Ando, Y. and Suhr, O.B. Advanced glycation end products (AGE) and the receptor for AGE are present in gastrointestinal tract of familial amyloidotic polyneuropathy patients but do not induce NF-κB activation. Acta Neuropathol. 104 (2002) 441447.
  • 76. Sousa, M.M., Du Yan, S., Fernandes, R., Guimaraes, A., Stern, D. and Saraiva, M.J. Familial amyloid polyneuropathy, receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J. Neurosci. 21 (2001) 75767586.
  • 77. Shorter, J. and Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nat. Rev. Genet. 6 (2005) 435450.
  • 78. Knight, R.S. and Will, R.G. Prion diseases. J. Neurol. Neurosurg. Psychiat. 75 (2004) 3642.
  • 79. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95 (1998) 1336313383.
  • 80. Soto, C. and Castilla, J. The controversial protein-only hypothesis of prion propagation. Nat. Med. 10 (2004) 6367.
  • 81. Didonna, A. Prion protein and its role in signal transduction. Cell. Mol. Biol. Lett. 18 (2013) 209230.
  • 82. Sasaki, N., Takeuchi, M., Chowei, H., Kikuchi, S., Hayashi, Y., Nakano, N., Ikeda, H., Yamagishi, S., Kitamoto, T., Saito, T. and Makita, Z. Advanced glycation end products (AGE) and their receptor (RAGE) in the brain of patients with Creutzfeldt–Jakob disease with prion plaques. Neurosci. Lett. 326 (2002) 117120.
  • 83. Choi, Y.G., Kim, J.I., Jeon, Y.C., Park, S.J., Choi, E.K., Rubenstein, R., Kascsak, R.J., Carp, R.I. and Kim, Y.S. Nonenzymatic glycation at the N-terminus of pathogenic prion protein in transmissible spongiform encephalopathies. J. Biol. Chem. 279 (2004) 3040230409.
  • 84. Southern, L., Williams, J. and Esiri, M.M. Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML) in human brain: relation to vascular dementia. BMC Neurol. 7 (2007) 35.
  • 85. Yaffe, K., Lindquist, K., Schwartz, A.V., Vitartas, C., Vittinghoff, E., Satterfield, S., Simonsick, E.M., Launer, L., Rosano, C., Cauley, J.A. and Harris, T. Advanced glycation end product level, diabetes, and accelerated cognitive aging. Neurology 77 (2011) 1351356.
  • 86. Srikanth, V.. , Westcott, B., Forbes, J., Phan, T.G., Beare, R., Venn, A., Pearson, S., Greenaway, T., Parameswaran, V. and Münch, G. Methylglyoxal, cognitive function and cerebral atrophy in older people. J. Gerontol. A Biol. Sci. Med. Sci. 68 (2013) 683.
  • 87. Vlassara, H. and Uribarri, J. Glycoxidation and diabetic complications: modern lessons and a warning? Rev. Endocr. Metab. Disord. 5 (2004) 181188.
  • 88. Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B.S., Uribarri, J. and Vlassara, H. Advanced glycoxidation end products in commonly consumed foods. J. Am. Diet. Assoc. 104 (2004) 1287-1291.
  • 89. Wautier, J.L. and Schmidt, A.M. Protein glycation: a firm link to endothelial cell dysfunction. Circ. Res. 95 (2004) 233238.
  • 90. Vlassara, H., Cai, W., Crandall, J., Goldberg, T., Oberstein, R., Dardaine, V., Peppa, M. and Rayfield, E.J. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci. USA 99 (2002) 1559615601.
  • 1. 91. Förster, A., Kuhne, Y. and Henle, T. Studies on absorption and elimination of dietary Maillard reaction products. Ann. N. Y. Acad. Sci. 1043 (2005) 474-481.
  • 92. Henle, T. AGEs in foods: do they play a role in uremia?. Kidney Int. Suppl. 63 (2003) S145S147.
  • 93. Cai, W., Gao, Q.D., Zhu, L., Peppa, M., He, C. and Vlassara, H. Oxidative stress- inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol. Med. 8 (2002) 337346.
  • 94. Miyata, T., Ishikawa, N. and van Ypersele de Strihou, C. Carbonyl stress and diabetic complications. Clin. Chem. Lab. Med. 41 (2003) 11501158.
  • 95. Cai, W., Uribarri, J., Zhu, L., Chen, X., Swamy, S., Zhao, Z., Grosjean, F., Simonaro, C., Kuchel, G.A., Schnaider-Beeri, M., Woodward, M., Striker, G.E. and Vlassara, H. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc. Natl. Acad. Sci. USA 111 (2014) 4940-4945.
  • 96. van Boekel, M.A., van den Bergh, P.J. and Hoenders, H.J. Glycation of human serum albumin: inhibition by diclofenac. Biochim. Biophys. Acta 1120 (1992) 201204.
  • 97. Baynes, J.W. Role of oxidative stress in development of complication in diabetes. Diabetes 40 (1991) 405412.
  • 98. Price, D.L., Rhett, P.M., Thorpe, S.R. and Baynes, J.W. Chelating activity of advanced glycation end product (AGE) inhibitors. J. Biol. Chem. 276 (2001) 4896748972.
  • 99. Nagai, R., Murray, D.B., Metz, T.O. and Baynes, J.W. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes 61 (2012) 549559.
  • 100. Webster, J., Urban, C., Berbaum, K., Loske, C., Alpar, A., Gärtner, U., Garcia de Arriba, S., Arendt, T. and Munch, G. The carbonyl scavengers aminoguanidine and tenilsetam protect against the neurotoxic effects of methylglyoxal. Neurotox. Res. 7 (2005) 95101.
  • 101. Munch, G., Taneli, Y., Schraven, E., Schindler, U., Schinzel, R., Palm, D. and Riederer, P. The cognition-enhancing drug tenilsetam is an inhibitor of protein crosslinking by advanced glycosylation. J. Neural. Transm. Park. Dis. Dement. Sect. 8 (1994) 193208.
  • 102. Jakus, V., Hrnciarova, M., Carsky, J., Krahulec, B. and Rietbrock, N. Inhibition of nonenzymatic protein glycation and lipid peroxidation by drugs with anti-oxidant activity. Life Sci. 65 (1999) 19911993.
  • 103. Keita, Y., Michailova, M., Kratzer, W., Wörner, G., Wörner, W. and Rietbrock, N. Influence of penicillamine on the formation of early nonenzymatic glycation products of human serum proteins. Int. J. Clin. Pharmacol. Ther. Toxicol. 30 (1992) 441442.
  • 104. Stevens, A. The effectiveness of putative anti-cataract agents in the prevention of protein glycation. J. Am. Optom. Assoc. 66 (1995) 744749.
  • 105. Vasan, S., Zhang, X., Zhang, X., Kapurniotu, A., Bernhagen, J., Teichberg, S., Basgen, J., Wagle, D., Shih, D., Terlecky, I., Bucala, R., Cerami, A., Egan, J. and Ulrich, P. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382 (1996) 275-278.
  • 106. Sajithlal, G.B., Chittra, P. and Chandrakasan, G. Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem. Pharmacol. 56 (1998) 16071614.
  • 107. Wilkinson-Berka, J.L., Kelly, D.J., Koerner, S.M., Jaworski, K., Davis, B., Thallas, V. and Cooper, M.E. ALT-946 and aminoguanidine, inhibitors of advanced glycation, improve severe nephropathy in the diabetic transgenic (mREN-2)27 rat. Diabetes 51 (2002) 32833289.
  • 108. Forbes, J.M., Soulis, T., Thallas, V., Panagiotopoulos, S., Long, D.M., Vasan, S., Wagle, D., Jerums, G. and Cooper, M. E. Renoprotective effects of a novel inhibitor of advanced glycation. Diabetologia 44 (2001) 108114.
  • 109. Kikuchi, S., Shinpo, K., Moriwaka, F., Makita, Z., Miyata, T. and Tashiro, K. Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J. Neurosci. Res. 57 (1991) 280289.
  • 110. Dukic-Stefanovic, S., Schinzel, R., Riederer, P. and Munch, G. AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs? Biogerontology 2 (2001)1934.
  • 111. Ihl, R., Perisic, I., Maurer, K. and Dierks, T. Effect of 3 months treatment with tenilsetam in patients suffering from dementia of Alzheimer’s type (DAT). J. Neural. Trans. 1 (1989) 8485.
  • 112. Ruggiero-Lopez, D., Lecomte, M., Moinet, G., Patereau, G., Lagarde, M. and Wiernsperger, N. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem. Pharmacol. 58 (1999) 17651773.
  • 113. Beisswenger, P. and Ruggiero-Lopez, D. Metformin inhibition of glycation processes. Diabetes Metab. 29 (2003) 6S956S103.
  • 114. Beisswenger, P.J., Howell, S.K., Touchette, A.D., Lal, S. and Szwergold, S. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes 48 (1999) 198
  • 115. Kiho, T., Kato, M., Usui, S. and Hirano, K. Effect of buformin and metformin on formation of advanced glycation end products by methylglyoxal. Clin. Chim. Acta 358 (2005) 139145.
  • 116. Bonnefont-Rousselot, D. Antioxidant and anti-AGE therapeutics: evaluation and perspectives. J. Soc. Biol. 195 (2001) 391398.
  • 117. Hipkiss, A.R. Carnosine, a protective, anti-ageing peptide? Int. J. Biochem. Cell Biol. 30 (1998) 863868.
  • 118. Sobal, G., Menzel, E.J. and Sinzinger, H. Calcium antagonists as inhibitors of in vitro low density lipoprotein oxidation and glycation. Biochem. Pharmacol. 61 (2001) 373379.
  • 119. Akira, K., Amano, M., Okajima, F., Hashimoto, T. and Oikawa, S.S. Inhibitory effects of amlodipine and fluvastatin on the deposition of advanced glycation end products in aortic wall of cholesterol and fructosefed rabbits. Biol. Pharm. Bull. 29 (2006) 7581.
  • 120. Verbeke, P., Siboska, G.E., Clark, B.F. and Rattan, S.I. Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem. Biophys. Res. Commun. 276 (2000) 12651270.
  • 121. Jung, Y.S., Joe, B.Y., Cho, S.J. and Konishi, Y. 2,3-Dimethoxy-5-methyl1,4-benzoquinones and 2-methyl-1,4-naphthoquinones: glycation inhibitors with lipid peroxidation activity. Bioorg. Med. Chem. Lett. 15 (2005) 11251129.
  • 122. Culbertson, S.M., Enright, G.D. and Ingold, K.U. Synthesis of a novel radical trapping and carbonyl group trapping anti-AGE agent: a pyridoxamine analogue for inhibiting advanced glycation (AGE) and lipoxidation (ALE) end products. Org. Lett. 5 (2003) 26592662.
  • 123. Meeprom, A., Sompong, W., Chan, C.B. and Adisakwattana, S. Isoferulic acid, a new anti-glycation agent, inhibits fructose- and glucose-mediated protein glycation in vitro. Molecules 18 (2013) 64396454.
  • 124. Freedman, B.I., Wuerth, J.P., Cartwright, K., Bain, R.P., Dippe, S., Hershon, K., Mooradian, A.D. and Spinowitz, B.S. Design and baseline characteristics for the aminoguanidine Clinical trial in overt type 2 diabetic nephropathy (ACTION II). Control. Clin. Trials 20 (1999) 493510.
  • 125. Thornalley, P.J. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation end products. Arch. Biochem. Biophys. 419 (2003) 3140.
  • 126. Williams, M.E. Clinical studies of advanced glycation end product inhibitors and diabetic kidney disease. Curr. Diab. Rep. 4 (2004) 441446.
  • 127. Hager, K., Marahrens, A., Kenklies, M., Riederer, P. and Münch, G. Alphalipoic acid as a new treatment option for Azheimer type dementia. Arch. Gerontol. Geriat. 32 (2001) 275282.
  • 128. Zhao, J. and Zhong, C.J. A review on research progress of transketolase. Neurosci. Bull. 25 (2009) 9499.
  • 129. Shangari, N., Bruce, W.R., Poon, R. and O‘Brien, P.J. Toxicity of glyoxalsrole of oxidative stress, metabolic detoxification and thiamine deficiency. Biochem. Soc. Trans. 31 (2003) 1390393.
  • 130. Tarwadi, K.V. and Agte, V.V. Effect of micronutrients on methylglyoxal mediated in vitro glycation of albumin. Biol. Trace. Elem. Res. 143 (2011) 717725.
  • 131. Breslow, R. The mechanism of thiamine action: predictions from model experiments. Ann. N. Y. Acad. Sci. 98 (1962) 445452.
  • 132. Pohl, M., Sprenger, G.A. and Muller, M. A new perspective on thiamine catalysis. Curr. Opin. Biotechnol. 15 (2004) 335342.
  • 133. Voziyan, P.A. and Hudson, B.G. Pyridoxamine as a multifunctional pharmaceutical: targeting pathogenic glycation and oxidative damage. Cell Mol. Life Sci. 62 (2005) 16711681.
  • 134. Chandler, D., Woldu, A., Rahmadi, A., Shanmuga, K., Steiner, N., Wright, E., Benavente-García, O., Schulz, O., Castillo, J. and Münch, G. Effects of plant-derived polyphenols on TNF-alpha and nitric oxide production induced by advanced glycation end products. Mol. Nutr. Food Res. 54 (2010) 141150.
  • 135. Kim, J., Lee, H.J. and Lee, K.W. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J. Neurochem. 112 (2010) 14151430.
  • 136. Weinreb, O., Amit, T., Mandel, S. and Youdim, M.B. Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate, a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr. 4 (2009) 283296.
  • 137. Dorsey, P.G. and Greenspan, P. Inhibition of nonenzymatic protein glycation by pomegranate and other fruit juices. J. Med. Food 17 (2014) 447
  • 138. Lv, L., Shao, X., Chen, H., Ho, C.T. and Sang, S. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chem. Res. Toxicol. 24 (2011) 579586.
  • 139. Perez Gutierrez, R.M. Inhibition of advanced glycation end product formation by Origanum majorana l. in vitro and in streptozotocin-induced diabetic rats. Evid. Based Complement Alternat. Med. 598638 (2012) 18.
  • 140. Aldini, G., Vistoli, G., Stefek, M., Chondrogianni, N., Grune, T., Sereikaite, J., Sadowska-Bartosz, I. and Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic. Res. 1 (2013) 93137.
  • 141. Deane, R., Singh, I., Sagare, A.P., Bell, R.D., Ross, N.T., LaRue, B., Love, R., Perry, S., Paquette, N., Deane, R.J., Thiyagarajan, M., Zarcone, T., Fritz, G., Friedman, A.E., Miller, B.L. and Zlokovi, B.V. A multimodal RAGE- specific inhibitor reducesamyloid β-mediated brain disorder in a mouse model of Alzheimer’s disease. J. Clin. Invest. 122 (2012) 13771392.
  • 142. Han, Y.T., Choi, G.I., Son, D., Kim, N.J., Yun, H., Lee, S., Chang, D.J., Hong, H.S., Kim, H., Ha, H.J., Kim, Y.H., Park, H.J., Lee, J., Suh, Y.G. Ligand-based design, synthesis, and biological evaluation of 2-aminopyrimidines, a novel series of receptor for advanced glycation end products (RAGE) inhibitors. J. Med. Chem. 55 (2012) 91209135.
  • 143. Gospodarska, E., Kupniewska-Kozak, A., Goch, G. and Dadlez, M. Binding studies of truncated variants of the A β peptide to the V-domain of the RAGE receptor reveal A β residues responsible for binding. Biochim. Biophys. Acta 1814 (2011) 592609.
  • 144. Webster, S.J., Mruthinti, S., Hill, W.D., Buccafusco, J.J. and Terry. A.V.J. An aqueous orally active vaccine targeted againsta RAGE/AB complex as a novel therapeutic for Alzheimer’s disease. Neuromolecular Med. 14 (2012) 119130.
  • 145. Yu, W., Wu, J., Cai, F., Xiang, J., Zha, W., Fan, D., Guo, S., Ming, Z. and Liu, C. Curcumin alleviates diabetic cardiomyopathy in experimental diabeticrats. PLoS One 7 (2012) e52013.
  • 146. Yan, F.L., Zheng, Y. and Zhao, F.D. Effects of Ginkgo biloba extract EGb761 on expression of RAGE and LRP-1 in cerebral microvascular endothelial cells under chronic hypoxia and hypoglycemia. Acta Neuropathol. 116 (2008) 529535.
  • 147. Preston, J.E., Hipkiss, A.R., Himsworth, D.T., Romero, I.A. and Abbott, J.N. Toxic effects of beta-amyloid (25-35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and beta-alanine. Neurosci. Lett. 242 (1998) 105108.
  • 148. Delpierre, G., Rider, M.H., Collard, F., Stroobant, V., Vanstapel, F., Santos, H. and Van Schaftingen, E. Identification, cloning, and heterologous expression of a mammalian fructosamine-3- kinase. Diabetes 49 (2000) 16271634.
  • 149. Szwergold, B.S., Howell, S. and Beisswenger, P.J. Human fructosamine-3- kinase. Purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes 50 (2001) 21392147.
  • 150. Delpierre, G., Collard, F., Fortpied, J. and van Schaftingen, E. Fructosamine-3-kinase is involved in an intracellulardeglycation pathway in human erythrocytes. Biochem. J. 365 (2002) 801808.
  • 151. Delpierre, G. and Van Schaftingen, E. Fructosamine 3-kinase, an enzyme involved in protein deglycation. Biochem. Soc. Trans. 31 (2003) 13541357.
  • 152. Delpierre, G., Vertommen, D., Communi, D., Rider, M.H. and Van Schaftingen, E. Identification of fructosamine residues deglycated by fructosamine 3-kinase in human hemoglobin. J. Biol. Chem. 279 (2004) 2761327620.
  • 153. Veiga-da-Cunha, M., Jacquemin, P., Delpierre, G., Godfraind, C., Theate, I., Vertommen, D., Clotman, F., Lemaigre, F., Devuys, O. and Van Schaftingen, E. Increased protein glycation in fructosamine 3-kinasedeficient mice. Biochem. J. 399 (2006) 257264.
  • 154. Sakiyama, H., Takahashi, M., Yamamoto, T., Teshima, T., Lee, S.H., Miyamoto, Y., Misonou, Y. and Taniguchi, N. The internalization and metabolism of 3-deoxyglucosone in human umbilical vein endothelial cells. J. Biochem. 139 (2006) 245253.
  • 155. Mannervik, B. Molecular enzymology of the glyoxalase system. Drug Metabol. Drug Interact. 23 (2008) 1327.
  • 156. Kuhla, B., Luth, H.J., Haferburg, D., Boeck, K., Arendt,T. and Munch, G. Methylglyoxal, glyoxal and their detoxification in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1043 (2005) 211216.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.