PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 74 | 1 |

Tytuł artykułu

Daily rhythm of synapse turnover in mouse somatosensory cortex

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The whisker representations in the somatosensory barrel cortex of mice are modulated by sensory inputs associated with animal motor behavior which shows circadian rhythmicity. In a C57/BL mouse strain kept under a light/dark (LD 12:12) regime, we observed daily structural changes in the barrel cortex, correlated with the locomotor activity level. Stereological analysis of serial electron microscopic sections of the barrel cortex of mice sacrificed during their active or rest period, revealed an increase in the total numerical density of synapses and in the density of excitatory synapses located on dendritic spines during the rest, as well as an increase in the density of inhibitory synapses located on double-synapse spines during the active period. This is the first report demonstrating a daily rhythm in remodeling of the mammalian somatosensory cortex, manifested by changes in the density of synapses and dendritic spines. Moreover, we have found that the excitatory and inhibitory synapses are differently regulated during the day/night cycle.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

74

Numer

1

Opis fizyczny

p.104-110,fig.,ref.

Twórcy

autor
  • Department of Histology, Jagiellonian University Medical College, Krakow, Poland
  • Department of Animal Products Technology, University of Agriculture, Krakow, Poland
autor
  • Department of Histology, Jagiellonian University Medical College, Krakow, Poland
autor
  • Department of Histology, Jagiellonian University Medical College, Krakow, Poland
autor
  • Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
  • Warsaw School of Social Psychology Warsaw, Poland
  • Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
autor
  • Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland

Bibliografia

  • Balkema GW, Cusick K, Nguyen TH (2001) Diurnal varia¬tion in synaptic ribbon length and visual threshold. Vis Neurosci 18: 789-797.
  • Behrens UD, Kasten P, Wagner HJ (1998) Adaptation- dependent plasticity of rod bipolar cell axon terminal mor¬phology in the rat retina. Cell Tissue Res 294: 243-251.
  • DeFelipe J, Marco P, Busturia I, Merchan-Perez A (1999) Estimation of the number of synapses in the cerebral cortex: methodological considerations. Cereb Cortex 9: 722-732.
  • Domoslawski J (1993) All-purpose experimental data pro¬cessing package for chronobiology. In: Chronobiology and Chronomedicine (Hildebrandt G, Moog R, Eds.). PeterLang, Frankfurt, DE, p. 541-546.
  • Elbaz I, Foulkes NS, Gothilf Y, Appelbaum L (2013) Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish. Front Neural Circuits 7: 9.
  • Fiala JC, Harris KM (2001) Extending unbiased stereology of brain ultrastructure to three-dimensional volumes. J Am Med Inform Assoc 8: 1-16.
  • Girardet C, Becquet D, Blanchard MP, Francois-Bellan AM, Bosler O (2010) Neuroglial and synaptic rearrangements associated with photic entrainment of the circadian clock in the suprachiasmatic nucleus. Eur J Neurosci 32: 2133¬2142.
  • Jasinska M, Siucinska E, Glazewski S, Pyza E, Kossut M (2006) Characterization and plasticity of the double syn¬apse spines in the barrel cortex of the mouse. Acta Neurobiol Exp (Wars) 66: 99-104.
  • Jasinska M, Siucinska E, Cybulska-Klosowicz A, Pyza E, Furness DN, Kossut M, Glazewski S (2010) Rapid, learning-induced inhibitory synaptogenesis in murine barrel field. J Neurosci 30: 1176-1184.
  • Jasinska M, Siucinska E, Jasek E, Litwin JA, Pyza E, Kossut M (2013) Fear learning increases the number of polyribo- somes associated with excitatory and inhibitory synapses in the barrel cortex. PLoS ONE 8: e54301.
  • Knott G, Holtmaat A (2008) Dendritic spine plasticity - cur¬rent understanding from in vivo studies. Brain Res Rev 58: 282-289.
  • Knott GW, Quairiaux C, Genoud C, Welker E (2002) Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34: 265-273.
  • Lendvai B, Stern EA, Chen B, Svoboda K (2000) Experience- dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404: 876-881.
  • Nelson SE, Duricka DL, Campbell K, Churchill L, Krueger JM (2004) Homer1a and 1bc levels in the rat somatosen- sory cortex vary with the time of day and sleep loss. Neurosci Lett 367: 105-108.
  • Perez-Cruz C, Simon M, Flugge G, Fuchs E, Czeh B (2009) Diurnal rhythm and stress regulate dendritic architecture and spine density of pyramidal neurons in the rat infral- imbic cortex. Behav Brain Res 205: 406-413.
  • Pozo K, Goda Y (2010) Unraveling mechanisms of homeo- static synaptic plasticity. Neuron 66: 337-351.
  • Pyza E (2002) Dynamic structural changes of synaptic con¬tacts in the visual system of insects. Microsc Res Tech 58: 335-344.
  • Pyza E (2010) Circadian rhythms in the fly's visual system. In: Encyclopedia of the Eye Vol 1. (Dartt DA, Ed.). Academic Press, Oxford, UK, p. 302-311.
  • Pyza E, Gorska-Andrzejak J (2004) Involvement of glial cells in rhythmic size changes in neurons of the house¬fly's visual system. J Neurobiol 59: 205-215.
  • Pyza E, Gorska-Andrzejak J (2008) External and internal inputs affecting plasticity of dendrites and axons of the fly's neurons. Acta Neurobiol Exp (Wars) 68: 322¬333.
  • Pyza E, Meinertzhagen IA (1993) Daily and circadian rhythms of synaptic frequency in the first visual neuropile of the housefly's (Musca domestica L.) optic lobe. Proc Biol Sci 254: 97-105.
  • Pyza E, Meinertzhagen IA (1995) Monopolar cell axons in the first optic neuropil of the housefly, Musca domestica L., undergo daily fluctuations in diameter that have a circadian basis. J Neurosci 15: 407-418.
  • Pyza E, Meinertzhagen IA (1999) Daily rhythmic changes of cell size and shape in the first optic neuropil in Drosophila melanogaster. J Neurobiol 40: 77-88.
  • Spires TL, Molnar Z, Kind PC, Cordery PM, Upton AL, Blakemore C, Hannan AJ (2005) Activity-dependent regulation of synapse and dendritic spine morphology in developing barrel cortex requires phospholipase C-beta1 signalling. Cereb Cortex 15: 385-393.
  • Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134: 127-136.
  • Tang Y, Nyengaard JR, De Groot DM, Gundersen HJ (2001) Total regional and global number of synapses in the human brain neocortex. Synapse 41: 258-273.
  • Tang Y, Nyengaard J R, Pakkenberg B, Gundersen HJ (2003) Stereology of neuronal connections (myelinated fibers of white matter and synapses of neocortex) in human brain. Image Anal Stereol 22: 171-182.
  • Tankersley CG, Irizarry R, Flanders S, Rabold R (2002) Circadian rhythm variation in activity, body temperature, and heart rate between C3H/HeJ and C57BL/6J inbred strains. J Appl Physiol 92: 870-877.
  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10: 49-62.
  • Tsanov M, Manahan-Vaughan D (2007) The adult visual cortex expresses dynamic synaptic plasticity that is driven by the light/dark cycle. J Neurosci 27: 8414-8421.
  • Turrigiano GG, Nelson SB (2000) Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10: 358-364.
  • Weber P, Kula-Eversole E, Pyza E (2009) Circadian control of dendrite morphology in the visual system of Drosophila melanogaster. PLoS One 4: e4290.
  • Yang G, Gan WB (2012) Sleep contributes to dendritic spine formation and elimination in the developing mouse soma- tosensory cortex. Dev Neurobiol 72: 1391-1398.
  • Zhang G, Gao Z, Guan S, Zhu Y, Wang JH (2013) Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs. Mol Brain 6: 2.
  • Zuo Y, Lin A, Chang P, Gan WB (2005) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46: 181-189.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-257a8316-8e67-48bf-a17f-5ce6b728e8ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.