Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 1 |
Tytuł artykułu

How salt stress represses the biosynthesis of marrubiin and disturbs the antioxidant activity of Marrubium vulgare L

Warianty tytułu
Języki publikacji
We investigated the effects of different concentrations of NaCl (25, 50, 100, and 150 mM NaCl) on growth, phenolic content, and antioxidant activities of horehound (Marrubium vulgare L.). The long-term salt treatment (up to 100 mM NaCl) resulted in significant (p<0.05) reduction of height, fresh weight, total chlorophyll, and total phenol contents. The negative effect of NaCl was accompanied by a significant restriction in K⁺, Ca²⁺, Fe²⁺, and Zn²⁺ ion uptake, and by an increase in Na⁺ ion concentrations – the effects of which were most pronounced at the highest NaCl level. The content of the main bioactive compound marrubiin decreased with increased NaCl concentrations. The antioxidant activity of the methanol extracts from untreated and salt-treated plants revealed that the extracts from a salt-treated plant with 100 mM exhibits the strongest activity in the DPPH and β-carotene bleaching assays, while it showed no reducing power. The present results suggest that salt treatment negatively affects the morphological, physiological, and biochemical traits of M. vulgare, which appears to be highly sensitive to salinity.
Słowa kluczowe
Opis fizyczny
  • Faculte des Sciences de Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
  • Faculte des Sciences de Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
  • Laboratoire des Plantes Aromatiques et Medicinales, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
  • Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, 2050, Hammam-Lif, Tunisia
  • Faculte des Sciences de Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
  • Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande Ed. C8, 1749-016 Lisboa, Portugal
  • Faculte des Sciences de Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
  • 1. PARIDA A.K., DAS A.B. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60, 324, 2005.
  • 2. DANESHMAND F., ARVIN M.J., KALANTARI K.M. Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant. 32 (1), 91, 2010.
  • 3. HARRATHI J., HOSNI K., KARRAY-BOURAOUI N., ATTIA H., MARZOUK B., MAGNE C., LACHÂAL M. Effect of salt stress on growth fatty acids and essential oils in safflower (Carthamus tinctorius L.). Acta Physiol Plant. 34, 129, 2012.
  • 4. LI G.,WAN S., ZHOU J., YANG Z., QIN P. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crops. 31 (1), 13, 2010.
  • 5. QURESHI M.K., SUJEETH N., GECHEV T.S., HILLE J. The zinc finger protein ZAT11 modulates paraquat-induced programmed cell death in Arabidopsis thaliana. Acta Physiol Plant. 35, 1863, 2013.
  • 6. BOURGOU S., BETTAIEB I., SAIDANI M., MARZOUK B. Fatty Acids, Essential Oil, and Phenolics Modifications of Black Cumin Fruit under NaCl Stress Conditions. J. Agric. Food Chem. 58, 12399, 2010.
  • 7. PRADO K., MAUREL C. Regulation of leaf hydraulics: from molecular to whole plant levels. Front Plant Sci. 4, 255, 2013.
  • 8. RODRÍGUEZ J.V., MARTÍN J.E. REVIEW An Insight into a Blockbuster Phytomedicine; Marrubium vulgare L. Herb. More of a Myth than a Reality? Phytother. Res. 2016.
  • 9. AKTHER N., SHAWL A.S., SULTANA S., CHANDAN B.K., AKHTER M. Hepatoprotective activity of Marrubium vulgare against paracetamol induced toxicity. J Pharm Res. 7 (7), 565, 2013.
  • 10. IZZO A.A., HOON-KIM S., RADHAKRISHNAN R., WILLIAMSON E.M. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytother Res. 30 (5), 691, 2016.
  • 11. ORHAN E.I., BELHATTAB R., ŞENOL F.S., GÜLPINAR A.R., HOŞBAŞ S., KARTAL M. Profiling of cholinesterase inhibitory and antioxidant activities of Artemisia absinthium, A. Herba-alba, A. fragrans, Marrubium vulgare, M. astranicum, Origanum vulgare subsp. glandulosum and essential oil analysis of two Artemisia species. Ind Crops Prod. 32, 566, 2010.
  • 12. ZAABAT N., HAY A., MICHALET S., DARBOUR N., BAYET C., SKANDRANI I., CHEKIR-GHEDIRA L., AKKAL S., DIJOUX-FRANCA M. Antioxidant and antigenotoxic properties of compounds isolated from Marrubium deserti de Noé. Food Chem. Toxicol. 49 (12), 3328, 2011.
  • 13. BOUDJELAL A., HENCHIRI C., SIRACUSA L., SARI M., RUBERTO G. Compositional analysis and in vivo anti-diabetic activity of wild Algerian Marrubium vulgare L. infusion. Fitoterapia. 83 (2), 286, 2012.
  • 14. DE ABREU, I.N., MAZZAFERA, P. Effect of water and temperature stress on the content of active constituents of Hypericum brasilienne Choisy. Plant Physiol Biochem. 43, 241, 2005.
  • 15. BOULILAA A., SANAAB A., BEN SALEM I., ROKBENI N., M’RABET Y., HOSNI K., FERNANDEZ X. Antioxidant properties and phenolic variation in wild populations of Marrubium vulgare L. (Lamiaceae). Ind Crops Prod. 76, 616, 2015.
  • 16. POPOOLA O.K., ELBAGORY A.M., AMEER F., HUSSEIN A.A. A review: Marrubiin. Molecules. 18, 9049, 2013.
  • 17. ALAPETITE P.G. Flore de la Tunisie. Angiospermes-Dicotylédones Gamopétales. Imprimerie Officielle de la République Tunisienne. Tunis, 581, 1988.
  • 18. LICHTENTHALER H.K., BUSCHMANN C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr Prot Food Anal Chem.431, 2001.
  • 19. LARSSON H.E., BORNMAN J.F., HÅKAN A.S.P. Influence of UV-B radiation and Cd²⁺ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J. Exp. Bot. 49, 1031, 1998.
  • 20. ARGYROPOULOU C., KARIOTI A., SKALTSA H. Labdane diterpenes from Marrubium thessalum. Phytochemistry. 70, 635, 2009.
  • 21. PIRES J., PRASIL B., ARAÚJO M.E.M. reduction of free fatty acids in acidic nonedible oils by modifeid K10 clay. J Am Oil Chem Soc. 90 (4), 555, 2013.
  • 22. AMESSIS-OUCHEMOUKH N., MADANI K., FALÉ L.V.P., SERRALHEIRO M.L., ARAÚJO M.E.M. Antioxidant capacity and phenolic contents of some Mediterranean medicinal plants and their potential role in the inhibition of cyclooxygenase-1and acetylcholinesterase activities. Ind Crops Prod. 53, 6, 2014a.
  • 23. OYAIZU M. Studies on products of browning reactions: Antioxidative activities of browning products of browning reaction prepared from glucosamine. Jpn J Nutr. 44, 307, 1986.
  • 24. KHADRI A., SERRALHEIRO M.L.M., NOGUEIRA J.M.F., NEFFATI M., SMITI S., ARAÚJO M.E.M. Antioxidant and antiacetylcholinesterase activities of essential oils from Cymbopogon schoenanthus L. Spreng. Determination of chemical composition by GC–mass spectrometry and 13C NMR. Food Chem. 109, 630, 2008.
  • 25. GULLÉN M.D., RUIZ A. High resolution ¹H nuclear magnetic resonance in the study of edible oils and fats. Trends Food Sci Technol. 328, 2001.
  • 26. STATSOFT. STATISTICA for Windows (Computer program Electronic Manual). StatSoft Inc,Tulsa, Ok, 1998.
  • 27. OUHIBI C., ATTIA H., REBAH F., MSILINI N., CHEBBI M., AARROUF J., URBAN L., LACHAAL M. Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiol Biochem. 1, 2014.
  • 28. TARCHOUNE I., DEGL’INNOCENTI E., KADDOUR R., GUIDI L., LACHAÂL M., NAVARI-IZZO F., OUERGHI Z. Effects of NaCl or Na₂SO₄ salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiol Plant. 34, 607, 2012.
  • 29. Parida A.K., Das A.B., Sanada Y., Mohanty P. Effects of salinity on biochemical components of the mangrove, Aeceras corniculatum. Aquatic Bot. 80, 77, 2004.
  • 30. BEN TAÂRIT M., MSAADA K., HOSNI K., MARZOUK B. Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem. 119, 951, 2012a.
  • 31. BEN TAÂRIT M., MSAADA K., HOSNI K., MARZOUK B. Fatty acids, phenolic changes and antioxidant activity of clary sage (Salvia sclarea L.) rosette leaves grown under saline conditions. Ind Crops Prod. 38, 58, 2012b.
  • 32. HARRATHI J., ATTIA H., NEFFATI M., HOSNI K., MARZOUK B., LACHÂAL M., KARRAY-BOURAOUI N. Salt effects on shoot growth and essential oil yield and composition in safflower (Carthamus tinctorius L.). J Essent Oil Res. 25 (6), 482, 2013.
  • 33. ASSAHA D.V.M., UEDA A., SANEOKA H. Comparison of growth and mineral accumulation of two solanaceous species, Solanum scabrum Mill. (huckleberry) and S. melongena L. (eggplant), under salinity stress. Soil Sci. Plant Nutr. 59, 912, 2013.
  • 34. DOGANLAR Z.B., DEMIR K., BASAK H., GUL I. Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. Afr. J. Agric. Res. 5, 2056, 2010.
  • 35. MANUCHEHRI R., SALEHI H. Physiological and biochemical changes of common bermudagrass (Cynodon dactylon [L.] Pers.) under combined salinity and deficit irrigation stresses. ‎S. Afr. J. Bot. 92, 83, 2014.
  • 36. MAHMOUDI H., KADDOUR R., HUANG J., NASRI N., OLFA B., M’RAH S., HANNOUFA A., LACHAÂL M., OUERGHI Z. Varied tolerance to NaCl salinity is related to biochemical changes in two contrasting lettuce genotypes. Acta Physiol Plant. 33, 1613, 2012. doi:10.1007/s11738-010-0696-2.
  • 37. MANAA A., GHARBI E., MIMOUNI H., WASTI S., ASCHI-SMITI S., LUTTS S., BEN AHMED H. Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. ‎S. Afr. J. Bot. 95, 32, 2014.
  • 38. ALHASNAWI A.N., CHE RADZIAH C.M.Z., KADHIMI A.A., ISAHAK A., MOHAMAD A., YUSOFF W.M.W. Enhancement of antioxidant enzymes activities in rice callus by ascorbic acid under salinity stress. Biol. Plant. XX (X), XXX, 2016.
  • 39. BEN ABDALLAH S., AUNG B., AMYOT L., LACHAÂL M., KARRAY-BOURAOUI N., HANNOUFA A. Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol Plant. 38, 72, 2016.
  • 40. KNÖSS W, ZAPP J. Accumulation of Furanic Labdane Diterpenes in Marrubium vulgare and Leonurus cardiac. Planta Med. 64, 316, 1998.
  • 41. BEN TAÂRIT M., MSAADA K., HOSNI K., MARZOUK B. Physiological changes and essential oil composition of clary sage (Salvia sclarea L.) rosette leaves as affected by salinity. Acta Physiol Plant. 33 (1), 153, 2011.
  • 42. ZERBE P., CHIANG A., DULLAT H., O’NEIL-JOHNSON M., STARKS C., HAMBERGER B., BOHLMANN J. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare. The Plant J. 79, 914, 2014.
  • 43. PATERAKI I., KANELLIS A.K. Stress and developmental responses of terpenoid biosynthetic genes in Cistus creticus subsp. Plant Cell Rep. 29 (6), 629, 2010.
  • 44. NEFFATI M., SRITI J., HAMDAOUI G., KCHOUK E.M., MARZOUK B. Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chem. 124, 221, 2011.
  • 45. SALEH A.M., MADANY M.M.Y. Coumarin pretreatment alleviates salinity stress in wheat seedlings. Plant Physiol Biochem. 88, 27, 2015.
  • 46. TIWARI J.K., MUNSHI A.D., KUMAR R., PANDEY R.N., ARORA A., BHAT J.S., SUREJA K. Effect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol Plant. 32 (1),103, 2010.
  • 47. KARRAY-BOURAOUI N., HARBAOUI F., RABHI M., JALLALI I., KSOURI R., ATTIA H., MSILINI N., LACHAAL M. Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiol Plant. 33, 2011.
  • 48. BEN ABDALLAH S., RABHI M., HARBAOUI F., ZARKALAI F., LACHÂAL M., KARRAY-BOURAOUI N. Distribution of phenolic compounds and antioxidant activity between young and old leaves of Carthamus tinctorius L. and their induction by salt stress. Acta Physiol Plant. 35(4), 1161, 2013.
  • 49. BAÂTOUR O., KADDOUR R., TARCHOUN I., NASRI N., MAHMOUDI H., ZAGHDOUDI M., GHAITH H., MARZOUK B., BEN NASRI-AYACHI M., LACHAÂL M. Modification of Fatty Acid, Essential Oil and Phenolic Contents of Salt-Treated Sweet Marjoram (Origanum majorana L.) According to Developmental Stage. J. Food Sci. 77 (10), 1054, 2010.
  • 50. REZAZADEH A., GHASEMEZHAD A., BARANI M., TELMADARREHEI T. Effect of salinity on phenolic composition and antioxidant activity of Artichoke (Cynara scolymus L.) leaves. J. Med. Plants Res. 6 (3), 245, 2012.
  • 51. GOUPY P., HUGUES M., BOIVIN P., AMIOT J.M. “Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds,” J. Sci. Food Agr. 79, 1625, 1999.
  • 52. GILL S.S., TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 48, 909, 2010.
  • 53. VELIOGLU Y.S., MAZZA G., GAO L., OOMAH B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46, 4113, 1998.
  • 54. FRANKEL E.N., HUANG S.W., KANNER J., GERMAN J.B. Interfacial phenomena in the evaluation of antioxidants: Bulk oils vs emulsion. J. Agric. Food Chem. 42, 1054, 1994.
  • 55. BASYUNI M., BABA S., INAFUKU M., IWASKI H., KINJO K., OKU H. Expression of terpenoid synthase mRNA and terpenoid content in salt stressed mangrove. J Plant Physiol. 166, 1786, 1999.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.