Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 74 | 2 |
Tytuł artykułu

Recovery of locomotion after partial spinal cord lesions in cats: assessment using behavioral, electrophysiological andimaging techniques

Warianty tytułu
Języki publikacji
This short review summarizes experimental findings made after spinal cord injury, mainly in cats. After a complete spinal injury, cats re-express hindlimb locomotion after 2-3 weeks because of a spinal locomotor circuitry named the central pattern generator or CPG. To investigate whether such circuits are also implicated in the recovery of locomotion after partial spinal lesions, we have used a dual spinal lesion paradigm. Essentially, after an initial unilateral hemisection, cats spontaneously recover quadrupedal locomotion. When a complete section is then performed 3 weeks after this hemisection, cats can walk with the hindlimbs within 24 hours compared to 2-3 weeks in cats with single complete spinal lesions demonstrating the importance of spinal mechanisms after partial lesions. Using kinematic and electromyographic methods to evaluate the changes throughout the dual lesion paradigm, we could show that the spinal cord reorganizes spontaneously without locomotor training or with training provided between the partial and complete spinal lesion. To assess spinal lesions we have used histology and magnetic resonance imaging (MRI). We will describe some advanced MRI techniques such as diffusion and magnetization transfer, which provide higher specificity to axon degeneration and demyelination. Examples of advanced MRI techniques in cats and humans are described, including the current limitations and perspectives.
Słowa kluczowe
Opis fizyczny
  • Institute of biomedical engineering, Polytechnique Montreal, Montreal, QC, Canada
  • Functional Neuroimaging Unit, CRIUGM, Universite de Montreal, Montreal, QC, Canada
  • SensoriMotor Rehabilitation Research Team of CIHR
  • Groupe de Recherche sur le Systeme Nerveux Central (GRSNC)
  • SensoriMotor Rehabilitation Research Team of CIHR
  • Department of Cell Biology and Anatomy, and Hotchkiss Brain Institute, Calgary, Alberta, Canada
  • Groupe de Recherche sur le Système Nerveux Central (GRSNC)
  • Department of Neuroscience, Universite de Montreal, QC, Canada
  • SensoriMotor Rehabilitation Research Team of CIHR
  • Groupe de Recherche sur le Systeme Nerveux Central (GRSNC)
  • Department of Neuroscience, Universite de Montreal, QC, Canada
  • SensoriMotor Rehabilitation Research Team of CIHR
  • Baker LL, Chandler SH (1987) Characterization of hindlimb motoneuron membrane properties in acute and chronic spinal cats. Brain Res 420: 333-339.
  • Ballermann M, Fouad K (2006) Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers. Eur J Neurosci 23: 1988-1996.
  • Barbeau H, Rossignol S (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412: 84-95.
  • Barbeau H, Julien C, Rossignol S (1987) The effects of clo- nidine and yohimbine on locomotion and cutaneous reflexes in the adult chronic spinal cat. Brain Res 437: 83-96.
  • Barbeau H, Rossignol S (1990) The effects of serotonergic drugs on the locomotor pattern and on cutaneous reflexes of the adult chronic spinal cat. Brain Res 514: 55-67.
  • Barbeau H, Rossignol S (1994) Enhancement of locomotor recovery following spinal cord injury. Curr Opin Neurol 7: 517-524.
  • Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7: 269-277.
  • Barrière G, Leblond H. Provencher J, Rossignol S (2008) Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord inju¬ries. J Neurosci 28: 3976-3987.
  • Barrière G, Frigon A, Leblond H, Provencher J, Rossignol S (2010) Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern. J Neurophysiol 104: 1119-1133.
  • Barthélemy D, Leblond H, Provencher J, Rossignol S (2006) Non-locomotor and locomotor hindlimb responses evoked by electrical microstimulation of the lumbar cord in spi- nalized cats. J Neurophysiol 96: 3273-3292.
  • Barthélemy D, Leblond H, Rossignol S (2007) Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats. J Neurophysiol 97: 1986-2000.
  • Basser PJ, Pierpaoli C (1996) Microstructural and physio¬logical features of tissues elucidated by quantitative-dif-fusion-tensor MRI. J Magn Reson B 111: 209-219.
  • Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR in bio- medicine 15: 435-455.
  • Beaulieu C, Allen PS (1994) Determinants of anisotropic water diffusion in nerves. Magn Reson Med 31: 394¬400.
  • Bélanger M, Drew T, Provencher J, Rossignol S (1996) A comparison of treadmill locomotion in adult cats before and after spinal transection. J Neurophysiol 76: 471¬491.
  • Bregman BS (1998) Regeneration in the spinal cord. Curr Opin Neurobiol 8: 800-807.
  • Brustein E, Rossignol S (1998) Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms. J Neurophysiol 80: 1245-1267.
  • Brustein E, Rossignol S (1999) Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. II. Effects of noradrenergic and serotoninergic drugs. J Neurophysiol 81: 1513-1530.
  • Cadotte DW, Fehlings MG (2013) Spinal cord injury: Visualizing plasticity and repair in the injured CNS. Nat Rev Neurol 9: 546-547.
  • Chau C, Barbeau H, Rossignol S (1998a) Early locomotor training with clonidine in spinal cats. J Neurophysiol 79: 392-409.
  • Chau C, Barbeau H, Rossignol S (1998b) Effects of intrath- ecal a1- and a2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. J Neurophysiol 79: 2941-2963.
  • Cohen-Adad J, Benali H, Hoge RD, Rossignol S (2008) In vivo DTI of the healthy and injured cat spinal cord at high spatial and angular resolution. NeuroImage 40: 685-697.
  • Cohen-Adad J, El Mendili MM, Lehericy S, Pradat PF, Blancho S, Rossignol S, Benali H (2011a) Demyelination and degeneration in the injured human spinal cord detect¬ed with diffusion and magnetization transfer MRI. NeuroImage 55: 1024-1033.
  • Cohen-Adad J, Leblond H, Delivet-Mongrain H, Martinez M, Benali H, Rossignol S (2011b) Wallerian degeneration after spinal cord lesions in cats detected with diffusion tensor imaging. Neuroimage 57: 1068-1076.
  • Cohen-Adad J, Mendili MM, Morizot-Koutlidis R, Lehericy S, Meininger V, Blancho S, Rossignol S, Benali H, Pradat
  • PF (2013) Involvement of spinal sensory pathway in ALS and specificity of cord atrophy to lower motor neuron degeneration. Amyotroph Lateral Scler Frontotemporal Degener 14: 30-38.
  • Côté M-P, Gossard J-P (2004) Step-training dependent plasticity in spinal cutaneous pathways. J Neurosci 24: 11317-11327.
  • Côté M-P, Menard A, Gossard J-P (2003) Spinal cats on the treadmill: changes in load pathways. J Neurosci 23: 2789-2796.
  • Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, Qi J, Edgerton VR, Sofroniew MV (2008) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14: 69-74.
  • Cowley KC, Zaporozhets E, Schmidt BJ (2008) Propriospinal neurons are sufficient for bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord. J Physiol 586: 1623-1635.
  • de Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998) Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol 80: 83-91.
  • Dowell NG, Jenkins TM, Ciccarelli O, Miller DH, Wheeler- Kingshott CA (2009) Contiguous-slice zonally oblique multislice (CO-ZOOM) diffusion tensor imaging: exam¬ples of in vivo spinal cord and optic nerve applications. J Magn Reson Imaging 29: 454-460.
  • Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR (2004) Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci 27: 145-167.
  • Farrell JA, Zhang J, Jones MV, Deboy CA, Hoffman PN, Landman BA, Smith SA, Reich DS, Calabresi PA, van Zijl PC (2010) q-space and conventional diffusion imag¬ing of axon and myelin damage in the rat spinal cord after axotomy. Magn Reson Med 63: 1323-1335.
  • Fouad K, Pedersen V, Schwab ME, Brosamle C (2001) Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr Biol 11: 1766-1770.
  • Frigon A, Rossignol S (2006) Functional plasticity follow¬ing spinal cord lesions. Prog Brain Res 157: 231-260.
  • Frigon A, Gossard JP (2009) Asymmetric control of cycle period by the spinal locomotor rhythm generator in the adult cat. J Physiol 587: 4617-4628.
  • Frigon A, Barriere G, Leblond H, Rossignol S (2009) Asymmetric changes in cutaneous reflexes after a partial spinal lesion and retention following spinalization during locomotion in the cat. J Neurophysiol 102: 2667-2680.
  • Ghosh A, Sydekum E, Haiss F, Peduzzi S, Zorner B, Schneider R, Baltes C, Rudin M, Weber B, Schwab ME (2009) Functional and anatomical reorganization of the sensory-motor cortex after incomplete spinal cord injury in adult rats. J Neurosci 29: 12210-12219.
  • Ghosh A, Haiss F, Sydekum E, Schneider R, Gullo M, Wyss MT, Mueggler T, Baltes C, Rudin M, Weber B, Schwab ME (2010) Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nat Neurosci 13: 97-104.
  • Giroux N, Rossignol S, Reader TA (1999) Autoradiographic study of a1-, a2-Noradrenergic and Serotonin 1A receptors in the spinal cord of normal and chronically transected cats. J Comp Neurol 406: 402-414.
  • Giroux N, Chau C, Barbeau H, Reader TA, Rossignol S (2003) Effects of intrathecal glutamatergic drugs on loco¬motion. II. NMDA and AP-5 in intact and late spinal cats. J Neurophysiol 90: 1027-1045.
  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Handbook of Physiology. The Nervous System II. (Brookhart JM, Mountcastle VB, Eds), American Physiological Society, Bethesda, MA, p. 1179¬1236.
  • Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34: 241-261.
  • Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized auto- calibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47: 1202-1210.
  • Halbertsma JM (1983) The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta Physiol Scand Suppl 521: 1-75.
  • Helgren ME, Goldberger ME (1993) The recovery of pos¬tural reflexes and locomotion following low thoracic hemisection in adult cats involves compensation by undamaged primary afferent pathways. Exp Neurol 123: 17-34.
  • Hounsgaard J, Hultborn H, Jespersen J, Kiehn O (1988) Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hy- droxytryptophan. J Physiol 405: 345-367.
  • Hultborn H, Denton ME, Wienecke J, Nielsen JB (2003) Variable amplification of synaptic input to cat spinal motoneurones by dendritic persistent inward current. J Physiol 552: 945-952.
  • Jain N, Catania KC, Kaas JH (1997) Deactivation and reac¬tivation of somatosensory cortex after dorsal spinal cord injury. Nature 386: 495-498.
  • Jiang W, Drew T (1996) Effects of bilateral lesions of the dorsolateral funiculi and dorsal columns at the level of the low thoracic spinal cord on the control of locomotion in the adult cat: I.Treadmill walking. J Neurophysiol 76: 849-866.
  • Kato M (1992) Walking of cats on a grid:performance of locomotor task in spinal intact and hemisected cats. Neurosci Lett 145: 129-132.
  • Kharbanda HS, Alsop DC, Anderson AW, Filardo G, Hackney DB (2006) Effects of cord motion on diffusion imaging of the spinal cord. Magn Reson Med 56: 334¬339.
  • Klawiter EC, Schmidt RE, Trinkaus K, Liang H-F, Budde MD, Naismith RT, Song S-K, Cross AH, Benzinger TL (2011) Radial Diffusivity Predicts Demyelination in ex¬vivo Multiple Sclerosis Spinal Cords. NeuroImage 55: 1454-1460.
  • Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM (1994) Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology 192: 521-529.
  • Laule C, Vavasour IM, Madler B, Kolind SH, Sirrs SM, Brief EE, Traboulsee AL, Moore GR, Li DK, Mackay AL (2007) MR evidence of long T2 water in pathological white matter. J Magn Reson Imaging 26: 1117-1121.
  • Levesque IR, Giacomini PS, Narayanan S, Ribeiro LT, Sled JG, Arnold DL, Pike GB (2010) Quantitative magnetiza¬tion transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions. Magn Reson Med 63: 633-640.
  • Li Y, Bennett DJ (2003) Persistent sodium and calcium cur¬rents cause plateau potentials in motoneurons of chronic spinal rats. J Neurophysiol 90: 857-869.
  • Lovely RG, Gregor RJ, Roy RR, Edgerton VR (1986) Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol 92: 421¬435.
  • Lovely RG, Gregor RJ, Roy RR, Edgerton VR (1990) Weight-bearing hindlimb stepping in treadmill-exercised adult spinal cat. Brain Res 514: 206-218.
  • Martinez M, Brezun JM, Zennou-Azogui Y, Baril N, Xerri C (2009) Sensorimotor training promotes functional recov¬ery and somatosensory cortical map reactivation follow¬ing cervical spinal cord injury. Eur J Neurosci 30: 2356¬2367.
  • Martinez M, Delcour M, Russier M, Zennou-Azogui Y, Xerri C, Coq JO, Brezun JM (2010) Differential tactile and motor recovery and cortical map alteration after C4-C5 spinal hemisection. Exp Neurol 221: 186-197.
  • Martinez M, Rossignol S (2011) Changes in CNS structures after spinal cord lesions implications for BMI. Prog Brain Res 194: 191-202.
  • Martinez M, Rossignol S (2013) A dual spinal cord lesion paradigm to study spinal locomotor plasticity in the cat. Ann N Y Acad Sci 1279: 127-134.
  • Martinez M, Delivet-Mongrain H, Leblond H, Rossignol S (2011) Recovery of hindlimb locomotion after incom¬plete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor cir¬cuitry. J Neurophysiol 106: 1969-1984.
  • Martinez M, Delivet-Mongrain H, Leblond H, Rossignol S (2012a) Effect of locomotor training in completely spi- nalized cats previously submitted to a spinal hemisection. J Neurosci 32: 10961-10970.
  • Martinez M, Delivet-Mongrain H, Leblond H, Rossignol S (2012b) Incomplete spinal cord injury promotes durable functional changes within the spinal locomotor circuitry. J Neurophysiol 108: 124-134.
  • Martinez M, Delivet-Mongrain H, Rossignol S (2013) Treadmill training promotes spinal changes leading to locomotor recovery after partial spinal cord injury in cats. J Neurophysiol 109: 2909-2922.
  • Murray M, Goldberger ME (1974) Restitution of func¬tion and collateral sprouting in the cat spinal cord: the partially hemisected animal. J Comp Neurol 158: 19-36.
  • Neema M, Stankiewicz J, Arora A, Guss ZD, Bakshi R (2007) MRI in Multiple Sclerosis: What's Inside the Toolbox? Neurotherapeutics 4: 602-617.
  • Nudo RJ (2006) Plasticity. NeuroRx 3: 420-427.
  • Pearson KG, Rossignol S (1991) Fictive motor patterns in chronic spinal cats. J Neurophysiol 66: 1874¬1887.
  • Pike GB, De Stefano N, Narayanan S, Worsley KJ, Pelletier D, Francis GS, Antel JP, Arnold DL (2000) Multiple scle¬rosis: magnetization transfer MR imaging of white matter before lesion appearance on T2-weighted images. Radiology 215: 824-830.
  • Raineteau O, Fouad K, Bareyre FM, Schwab ME (2002) Reorganization of descending motor tracts in the rat spi¬nal cord. Eur J Neurosci 16: 1761-1771.
  • Rossignol S (2006) Plasticity of connections underlying locomotor recovery after central and/ or peripheral lesions in the adult mammals. Philos Trans R Soc Lond B Biol Sci 361: 1647-1671.
  • Rossignol S, Frigon A (2011) Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annu Rev Neurosci 34: 413-440.
  • Rossignol S, Drew T, Brustein E, Jiang W (1999) Locomotor performance and adaptation after partial or complete spi¬nal cord lesions in the cat. Prog Brain Res 123: 349¬365.
  • Rossignol S, Dubuc R, Gossard JP (2006) Dynamic senso- rimotor interactions in locomotion. Physiol Rev 86: 89-154.
  • Rossignol S, Barriere G, Alluin O, Frigon A (2009) Re-expression of locomotor function after partial spinal cord injury. Physiology (Bethesda) 24: 127-139.
  • Rossignol S, Frigon A, Barriere G, Martinez M, Barthelemy D, Bouyer L, Belanger M, Provencher J, Chau C, Brustein D, Barbeau H, Giroux N, Marcoux J, Langlet C, Alluin O (2011) Spinal plasticity in the recovery of locomotion. Prog Brain Res 188: 229-241.
  • Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH (2004) Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 56: 407-415.
  • Sen PN, Basser PJ (2005) A model for diffusion in white matter in the brain. Biophys J 89: 2927-2938.
  • Sled JG, Pike GB (2001) Quantitative imaging of magneti¬zation transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 46: 923-931.
  • Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, Armstrong RC (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage 26: 132-140.
  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42: 288-292.
  • Thomas SL, Gorassini MA (2005) Increases in corti¬cospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol 94: 2844-2855.
  • Tillakaratne NJ, Mouria M, Ziv NB, Roy RR, Edgerton VR, Tobin AJ (2000) Increased expression of glutamate decar-boxylase (GAD(67)) in feline lumbar spinal cord after complete thoracic spinal cord transection. J Neurosci Res 60: 219-230.
  • Tillakaratne NJ, de Leon RD, Hoang TX, Roy RR, Edgerton VR, Tobin AJ (2002) Use-dependent modulation of inhibitory capacity in the feline lumbar spinal cord. J Neurosci 22: 3130-3143.
  • Weidner N, Ner A, Salimi N, Tuszynski MH (2001) Spontaneous corticospinal axonal plasticity and func¬tional recovery after adult central nervous system injury. Proc Natl Acad Sci U S A 98: 3513-3518.
  • Wilm BJ, Svensson J, Henning A, Pruessmann KP, Boesiger P, Kollias SS (2007) Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imag¬ing. Magn Reson Med 57: 625-630.
  • Zaporozhets E, Cowley KC, Schmidt BJ (2006) Propriospinal neurons contribute to bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord. J Physiol 572: 443-458.
  • Zhang J, Jones M, Deboy CA, Reich DS, Farrell JA, Hoffman PN, Griffin JW, Sheikh KA, Miller MI, Mori S, Calabresi PA (2009) Diffusion tensor magnetic reso¬nance imaging of Wallerian degeneration in rat spinal cord after dorsal root axotomy. J Neurosci 29: 3160¬3171.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.