Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 23 | 2 |
Tytuł artykułu

Numerical model of SO2 scubbing with seawater applied to marine engines

Warianty tytułu
Języki publikacji
The present paper proposes a CFD model to study sulphur dioxide (SO2) absorption in seawater. The focus is on the treatment of marine diesel engine exhaust gas. Both seawater and distilled water were compared to analyze the effect of seawater alkalinity. The results indicate that seawater is more appropriate than distilled water due to its alkalinity, obtaining almost 100% cleaning efficiency for the conditions analyzed. This SO2 reduction meets the limits of SOx emission control areas (SECA) when operating on heavy fuel oil. These numerical simulations were satisfactory validated with experimental tests. Such data are essential in designing seawater scrubbers and judging the operating cost of seawater scrubbing compared to alternative fuels
Słowa kluczowe
Opis fizyczny
  • University of Coruna, Coruna, Spain
  • Escuela Politecnica Superior, C/Mendizabal s/n. 15403 Ferrol, A Coruna, Spain
  • University of Coruna, Coruna, Spain
  • University of Coruna, Coruna, Spain
  • University of Santiago de Compostela, Santiago de Compostela, Spain
  • 1. Lamas, M.I.; Rodríguez, C.G.; Telmo, J.; Rodríguez, J.D. Numerical analysis of emissions from marine engines using alternative fuels. Submitted to Polish Maritime Research.
  • 2. Zhang, D.N.; Chen, Q.Z.; Zhao, Y.X.; Maeda, Y.; Tsujino, Y. Stack gas desulfurization by seawater in Shanghai. Water, Air & Soil Pollution, vol. 130, pp. 271-276, 2001.
  • 3. Oikawa, K.; Yongsiri, C.; Takeda, K.; Harimoto, T. Environmental Progress, vol. 22, pp. 67-73, 2003.
  • 4. Williams, P.J. Use of seawater as makeup water for wet flue gas desulfurization systems. EPRI-DOE-EPA Combined Utility Air Pollution Control Symphosium, August 16-20. Atlanta, Georgia, USA, 1999.
  • 5. Sun, X.; Meng, F.; Yang, F. Application of seawater to enhance SO2 removal from simulated flue gas through hollow fiber membrane contactor. Journal of Membrane Science, vol. 312, pp. 6-14, 2008.
  • 6. Darake, S.; Rahimi, A.; Hatamipour, M.S.; Hamzeloui, P. SO2 removal by seawater in a packed-bed tower: experimental study and mathematical modelling. Separation Science and Technology, vol. 49, pp. 988-998, 2014.
  • 7. Caiazzo, G.; Langella, G.; Miccio, F.; Scala, F. An experimental investigation on seawater SO2 scrubbing for marine application. Environmental Progress & Sustainable Energy, vol. 32, pp. 1179-1186, 2013.
  • 8. Andreasen, A.; Mayer, S. Use of seawater scrubbing for SO2 removal from marine engine exhaust gas. Energy & Fuels, vol. 21, pp. 3274-3279, 2007.
  • 9. Sukheon, A.; Nishida, O. New application of seawater and electrolyze seawater in air pollution control of marine diesel engine. JMSE International Journal, Series B: Fluids and Thermal Engineering, vol. 46, pp. 206-213, 2003.
  • 10. Sverdrup, H. U.; Johnson, M. W.; Fleming, R. H. The Oceans Their Physics, Chemistry, and General Biology; PrenticeHall: New York, 1942.
  • 11. Dickson, A. G.; Goyet, C., Eds.; Handbook of Methods for the Analysis of the various Parameters of the Carbon Dioxide System in Sea Water, Version 2, ORNL/CDIAC74; U.S. Department of Energy: Washington, DC, 1994.
  • 12. Sander, R. Henry’s Law Constants. In NIST Chemistry Webbook; NIST Standard Reference Database Number 69; Linstrom P. J., Mallard W. G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, 2005.
  • 13. Ranz, W.E.; Marshall, W.R. Evaporation from drops, Chemical Engineering Progress, vol. 48, pp. 141-146, 1952.
  • 14. Kuiken, K. (2008): Diesel engines for ship propulsion and power plants from 0 to 100000 kW. 1st Edition. The Netherlands: Target Global Energy Training.
  • 15. Woodyard, D. Pounder’s marine diesel engines and gas turbines. 9th Edition. Oxford. Elsevier, 2009.
  • 16. Lamas, M.I.; Rodríguez, C.G. CFD analysis of the scavenging process in the MAN B&W 7S50MC two-stroke diesel marine engine. Journal of Ship Research, vol. 56(3), pp. 154–161, 2012.
  • 17. Lamas, M.I.; Rodríguez, C.G.; Rebollido, J.M. Numerical model to study the valve overlap period in the Wärtsilä 6L46 four-stroke marine engine. Polish Maritime Research, vol.18, pp. 31-37, 2012.
  • 18. Lamas, M.I.; Rodríguez, C.G.; Rodríguez, J.D.; Telmo, J. Numerical analysis of several port configurations in the Fairbanks-Morse 38D8-1/8 opposed piston marine engine. Brodogradnja, vol. 66, no. 1, pp. 1-11, 2015.
  • 19. Lamas, M.I.; Rodríguez, C.G. Numerical model to study the combustion process and emissions in the Wärtsilä 6L 46 four-stroke marine engine. Polish Maritime Research, vol. 20, pp. 61-66, 2013.
  • 20. Lamas, M.I.; Rodríguez, C.G.; Aas, H.P. Computational fluid dynamics analysis of NOx and other pollutants in the MAN B&W 7S50MC marine engine and effect of EGR and water addition. International Journal of Maritime Engineering, vol. 155, Part A2, pp. A81-A88, 2013.
  • 21. Lamas, M.I.; Rodríguez, C.G.; Rodríguez, J.D.; Telmo, J. Internal modifications to reduce pollutant emissions from marine engines. A numerical approach. Journal of Naval Architecture and Marine Engineering, vol. 5(4), pp. 493501, 2013.
  • 22. Lamas, M.I.; Rodríguez, C.G.; Rodríguez, J.D.; Telmo, J. Computational fluid dynamics of NOx reduction by ammonia injection in the MAN B&W 7S50MC marine engine. International Journal of Maritime Engineering, vol. 156, Part A3, pp. A213-A220, 2014.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.