Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 07 |

Tytuł artykułu

The transition of proembryogenic masses to somatic embryos in Araucaria angustifolia (Bertol.) Kuntze is related to the endogenous contents of IAA, ABA and polyamines

Warianty tytułu

Języki publikacji



In somatic embryogenesis (SE) of conifers, the inability of many embryogenic cell lines to form well-developed somatic embryos may results from failure and constraints during the transition of proembryogenic masses (PEMs) to early somatic embryos. In the present work, we propose the inclusion of a preculture and prematuration steps looking at enhancing PEM III-to-early somatic embryos transition. It was further hypothesized that these results would correlate with the contents of endogenous indole-3-acetic acid (IAA), abscisic acid (ABA) and polyamines (PA). To test these hypotheses, the embryogenic culture was subjected to preculture with fluridone (FLD) and prematuration treatments with different combinations of carbon source and polyethylene glycol (PEG). The frequency of PEM III was increased after FLD preculture and the contents of IAA and ABA decreased, while the contents of PA increased. Putrescine (Put) was the most abundant PA present at this stage, followed by spermidine (Spd) and spermine (Spm). In early embryogenesis, prematuration treatments supplemented with maltose or lactose plus PEG enhanced the PEM III-to-early somatic embryos transition. IAA and ABA contents increased at this stage, while a decrease of the total free PA levels was observed. Put was the most abundant PA, followed by Spd and Spm, mainly in the treatment supplemented with PEG. This resulted in a decrease of PA ratio (Put/Spd + Spm) and, hence, PEM III-to-early somatic embryos transition. It was concluded that the preculture with FLD and prematuration treatments promote the PEM III-to-early somatic embryos transition throughout the whole early developmental process in Araucaria angustifolia.

Słowa kluczowe








Opis fizyczny



  • Graduate Program in Plant Genetic Resources, Department of Plant Science, Federal University of Santa Catarina, Florianopolis, SC C.P. 476, 88040-900, Brazil
  • Department of Botany, Plant Physiology Laboratory, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
  • Department of Cell Biology, Embryology and Genetics, Plant Cell Biology Laboratory, Federal University of Santa Catarina, Florianopolis, SC C.P. 476, 88049-900, Brazil
  • Laboratory of Plant, Department of Plant Science, Development Physiology and Genetics, Federal University of Santa Catarina, Florianopolis, SC C.P. 476, 88040-900, Brazil
  • Department of Cell Biology, Embryology and Genetics, Plant Cell Biology Laboratory, Federal University of Santa Catarina, Florianopolis, SC C.P. 476, 88049-900, Brazil
  • Central Laboratory of Electron Microscopy, Federal University of Santa Catarina, Florianopolis, SC, Brazil
  • Plant Cell Biology Laboratory, Department of Botany, Institute of Biosciences (IB), University of Sao Paulo (USP), Sao Paulo, SP 05422-970, Brazil
  • Laboratory of Plant, Department of Plant Science, Development Physiology and Genetics, Federal University of Santa Catarina, Florianopolis, SC C.P. 476, 88040-900, Brazil


  • Astarita LV, Guerra MP (1998) Early somatic embryogenesis in Araucaria angustifolia–induction and maintenance of embryonal-suspensor mass cultures. Braz J Plant Physiol 10:113–118
  • Astarita LV, Handro W, Floh EIS (2003) Changes in polyamines content associated with zygotic embryogenesis in the Brazilian pine, Araucaria angustifolia (Bert.) O. Ktze. Braz J Bot 26:163–168
  • Attree SM, Moore D, Sawhney VK, Fowke LC (1991) Enhanced maturation and desiccation tolerance of white spruce [Picea glauca (Moench) Voss] somatic embryos: effects of a nonplasmolysing water stress and abscisic acid. Ann Bot 68:519–525
  • Attree SM, Pomeroy MK, Fowke LC (1992) Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187:395–404
  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34
  • Baron K, Stasolla C (2008) The role of polyamines during in vivo and in vitro development. In Vitro Cell Dev Biol Plant 44:384–395. doi:10.1007/s11627-008-9176-4
  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125
  • Button J (1978) The effects of some carbohydrates on the growth and organization of Citrus ovular callus. Z Pflanzenphysiol 88:61–68
  • De Smet I, Jurgens G (2007) Patterning the axis in plants: auxin in control. Curr Opin Genet Dev 17:337–343. doi:10.1016/j.gde.2007.04.012
  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509
  • Dutra N, Silveira V, de Azevedo IG, Gomes-Neto LR, Façanha AR, Steiner N, Guerra MP, Floh EIS, Santa-Catarina C (2013) Polyamines affect the cellular growth and structure of proembryogenic masses in Araucaria angustifolia embryogenic cultures through the modulation of proton pump activities and endogenous levels of polyamines. Physiol Plant 148:121–132. doi:10.1111/j.1399-3054.2012.01695.x
  • Feirer RP (1995) The biochemistry of conifer embryo development: amino acids, polyamines, and storage proteins. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 1. Kluwer Academic Publishers, Dordrecht, pp 317–336
  • Filonova LH, Bozhkov PV, von Arnold S (2000) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51:249–264. doi:10.1093/jexbot/51.343.249
  • Fong FJ, Schiff A (1979) Blue-light-induced absorbance changes associated with carotenoids in Euglena. Planta 146:119–127
  • Friml J (2003) Auxin transport: shaping the plant. Curr Opin Plant Biol 6:7–12. doi:10.1016/S1369-5266(02)00003-1
  • Galston AW, Kaur-Sawhney R (1990) Polyamines. Plant Physiol 94:406–410
  • Gamble PR, Mullet JE (1986) Inhibition of carotenoid accumulation and abscisic acid biosynthesis in fluridone-treated dark-grown barley. Eur J Biochem 160:117–121
  • Guerra MP, Silveira V, Santos ALW, Astarita LV, Nodari RO (2000) Somatic embryogenesis in Araucaria angustifolia (Bert) O. Ktze. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in Woody plants. Kluwer Academic Press, Dordrecht, pp 457–478
  • Guerra MP, Silveira V, Reis MS, Schneider L (2002) Exploração, manejo e conservação da araucaria (Araucaria angustifolia). In: Simões LL, Lino CF (eds) Sustentável mata atlântica: a exploração de seus recursos florestais. Editora SENAC, São Paulo, pp 85–102
  • Guerra MP, Steiner N, Mantovani A, Nodari RO, Reis MS, Santos K (2008) Evolução, ontogênese e diversidade genética em Araucaria angustifolia. In: Barbieri RL (ed) Evolução de Plantas Cultivadas. EMBRAPA, Brasília, pp 149–184
  • Gupta PK, Durzan DJ (1987) Somatic embryos from protoplasts of loblolly pine proembryonal cells. Nat Biotechnol 5:710–712. doi:10.1038/nbt0787-710
  • Gupta PK, Pullman GS (1991) Method for reproducing coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation, US patent 5,036,007
  • Huang XL, Li XJ, Li Y, Huang LZ (2001) The effect of AOA on ethylene and polyamine metabolism during early phases of somatic embryogenesis in Medicago sativa. Physiol Plant 113:424–429
  • Jiménez VM, Guevara E, Herrera J, Bangerth F (2005) Evolution of endogenous hormone concentration in embryogenic cultures of carrot during early expression of somatic embryogenesis. Plant Cell Rep 23:567–572. doi:10.1007/s00299-004-0869-9
  • Kaur-Sawhney R, Altabella T, Tiburcio AF, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12
  • Kayim M, Koc NK (2006) The effects of some carbohydrates on growth and somatic embryogenesis in citrus callus culture. Sci Hortic 109:29–34. doi:10.1016/j.scienta.2006.01.040
  • Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637–645. doi:10.1007/s00425-005-0114-y
  • Kleine-Vehn JE, Friml J (2008) Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 24:447–473. doi:10.1146/annurev.cellbio.24.110707.175254
  • Kong L, Attree SM, Fowke LC (1998) Effects of polyethylene glycol and methylglyoxalbis (guanylhydrazone) on endogenous polyamine levels and somatic embryo maturation in white spruce (Picea glauca). Plant Sci 133:211–220
  • Langhansova L, Konradova H, Vanek T (2004) Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos. Plant Cell Rep 22:725–730. doi:10.1007/s00299-003-0750-2
  • Larher F, Leport L, Petrivalsky M, Chappart M (1993) Effectors for the osmoinduced proline response in higher plants. Plant Physiol Biochem 31:911–922
  • Malá J, Cvikrová M, Máchová P, Gemperlová L (2012). Role of polyamines in efficiency of Norway Spruce (Hurst Ecotype) somatic embryogenesis, embryogenesis. In: Dr. Ken-Ichi Sato (ed), ISBN: 978-953-51- 0466-7, In Tech, Available from Accessed 13 Dec 2013
  • Malabadi R, Nataraja K (2007) Putrescine influences somatic embryogenesis and plant regeneration in Pinus gerardiana Wall. Am J Plant Physiol 2:107–114. doi:10.3923/ajpp.2007.107.114
  • Minocha R, Kvaalen H, Minocha SC, Long S (1993) Polyamines in embryogenic cultures of Norway spruce (Picea abies) and red spruce (Picea rubens). Tree Physiol 13:365–377
  • Monteiro M, Kevers C, Dommes J, Gaspar T (2002) A specific role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA Meyer. Plant Cell Tissue Organ Cult 68:225–232
  • Moussian B, Schoof H, Haecker A, Jurgens G, Laux T (1998) Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J 17:1799–1809. doi:10.1093/emboj/17.6.1799
  • Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010) Biotechnological advances in guava (Psidium guajava L.): recent developments and prospects for further research. Trees 24:1–12. doi:10.1007/s00468-009-0384-2
  • Robichaud RL, Lessard VC, Merkle SA (2004) Treatments affecting maturation and germination of American chestnut somatic embryos. J Plant Physiol 161:957–969. doi:10.1016/j.jplph.2004.03.003
  • Rudus I, Weiler EW, Kepczynska EE (2009) Do stress-related phytohormones, abscisic acid and jasmonic acid play a role in the regulation of Medicago sativa L. somatic embryogenesis? Plant Growth Regul 59:159–169. doi:10.1007/s10725-009-9399-3
  • Saab IN, Sharp RE, Pritchard, Voetberg GS (1990) Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol 93:1329–1336
  • Schuller A, Reuther G (1993) Response of Abies alba embryonal-suspensor mass to various carbohydrate treatments. Plant Cell Rep 12:199–202
  • Schuller A, Kirchner-Ness Robert, Reuther G (2000) Interaction of plant growth regulators and organic C and N components in the formation and maturation of Abies alba somatic embryos. Plant Cell Tissue Organ Cult 60:23–31. doi:10.1023/A:1006429428170
  • Schwartz SH, Zeevaart JAD (2010) Abscisic acid biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action!, 3rd edn. Kluwer Academic, Boston, pp 137–155
  • Serapiglia MJ, Minocha R, Minocha SC (2008) Changes in polyamines, inorganic ions and glutamine synthetase activity in response to nitrogen availability and form in red spruce (Picea rubens). Tree Physiol 28:1793–1803
  • Shoeb F, Yadav JS, Bajaj S, Rajam MV (2001) Polyamines as biomarkers for plant regeneration capacity: improvement of regeneration by modulation of polyamine metabolism in different genotypes of indica rice. Plant Sci 160:1229–1235
  • Silveira V, Floh EIS, Handro W, Guerra MP (2004a) Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in embryogenic suspension cultures of Pinus taeda. Plant Cell Tissue Organ Cult 76:53–60. doi:10.1023/A:1025847515435
  • Silveira V, Balbuena TS, Santa-Catarina C, Floh EIS, Guerra MP, Handro W (2004b) Biochemical changes during seed development in Pinus taeda L. Plant Growth Regul 44:147–156
  • Silveira V, Santa-catarina C, Tun NN, Gunther FE, Scherer WH, Guerra MP, Floh EIS (2006) Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Kuntze. Plant Sci 171:91–98. doi:10.1016/j.plantsci.2006.02.015
  • Srinivasan C, Vasil IK (1986) Plant regeneration from protoplasts of sugarcane (Saccharum officinarum L.). J Plant Physiol 126:41–48
  • Stasolla C, van Zyl L, Egertsdotter U, Deborah C, Liu W, Serderoff RR (2003) The effects of polyethylene glycol on gene expression of developing White spruce somatic embryos. Plant Physiol 131:49–60
  • Steiner N (2009) Embriogênese somática em Araucaria angustifolia (Bertol.) Kuntze, Pinus sylvestris (Linneaus) e Pice aabies (Linneaus) Karsten: ontogênese, padrão de expressão proteica e do gene SERK. PhD thesis, Federal University of Santa Catarina
  • Steiner N, Vieira FN, Maldonado S, Guerra MP (2005) Effect of carbon source on morphology and histodifferentiation of Araucaria angustifolia embryogenic cultures. Braz Arch Biol Technol 48:896–903
  • Steiner N, Santa-Catarina C, Silveira V, Floh EI, Guerra MP (2007) Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell Tissue Organ Cult 89:55–62. doi:10.1007/s11240-007-9216-5
  • Steiner N, Santa-Catarina C, Andrade JBR, Balbuena TS, Guerra MP, Handro W, Floh EIS, Silveira V (2008) Araucaria angustifolia biotechnology. Funct Plant Sci Biotechnol 2:20–28
  • Stewart CR, Voetberg G (1987) Abscisic acid accumulation is not required for proline accumulation in wilted leaves. Plant Physiol 83:747–749
  • Su YH, Su YX, Liu YG, Zhang XS (2013) Abscisic acid is required for somatic embryo initiation through mediating spatial auxin response in Arabidopsis. Plant Growth Regul 69:167–176. doi:10.1007/s10725-012-9759-2
  • Thorpe TA, Stasolla C (2001) Somatic embryogenesis. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwer, Dordrecht, pp 279–336
  • Tomaz ML, Mendes BMJ, Mourão Filho FDA, Demétrio CGB, Jansakul N, Rodriguez APM (2001) Somatic embryogenesis in Citrus spp.: carbohydrate stimulation and histodifferentiation. In Vitro Cell Dev Biol Plant 37:446–452. doi:10.1007/s11627-001-0078-y
  • Vahdati K, Bayat S, Ebrahimzadeh H, Jariteh M, Mirmasoumi M (2008) Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglansregia L.). Plant Cell Tissue Organ Cult 93:163–171. doi:10.1007/s11240-008-9355-3
  • von Arnold S, Clapham D (2008) Spruce embryogenesis. In: Suárez MF, Bozhkov PV (eds) Plant embryogenesis methods in molecular biology. Humana, Totowa, pp 31–47
  • von Arnold S, Erikson T (1981) In vitro studies of adventitious shoot formation in Pinus contorta. Can J Bot 59:870–874
  • von Arnold S, Sabala I, Bozkov P, Dyachok J, Filanova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249. doi:10.1023/A:1015673200621
  • von Arnold S, Bozhkov P, Clapham D, Dyachok J, Filonova L, Hogberg KA, Ingouff M, Wiweger M (2005) Propagation of Norway spruce via somatic embryogenesis. Plant Cell Tissue Organ Cult 1:323–329. doi:10.1007/s11240-004-6662-1
  • Vondráková Z, Cvikrová M, Eliášová K, Martincová O, Vágner M (2010) Cryotolerance in Norway spruce and its association with growth rates, anatomical features and polyamines of embryogenic cultures. Tree Physiol 30:1335–1348. doi:10.1093/treephys/tpq074
  • Zaghmout OMF, Torello WA (1990) Somatic embryogenesis and plant regeneration from embryogenic suspension cultures of perennial ryegrass. In Vitro Cell Dev Biol 26:419–424. doi:10.1007/BF02623834

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.