PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |

Tytuł artykułu

The influence of trichoderma on the phytosanitary status of soil and yield of red beets (Beta vulgaris L. subsp. vulgaris)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Our article describes a study on the influence of mineral and organic fertilisation and three strains of Trichoderma sp. isolated from Polish soils on the count of moulds, including the Fusarium and Alternaria genera, as well as the soil fertility index and the yield of red beets. Apart from that, the aim of the study was to assess the interaction between Trichoderma sp. and plant pathogens. A field experiment was performed on haplic luvisols soil in 11 combinations: a control sample, a variant with a mineral fertiliser, one with manure and eight variants where tomato or onion waste composts were applied. Some of them were inoculated with Trichoderma atroviride (T1) and/or T. harzianum (T2 and T3) isolates. The total count of moulds and the counts of Trichoderma sp., Fusarium sp., and Alternaria sp. in the soil were the most strongly influenced by the addition of mineral fertiliser and manure. On the other hand, the values of the soil fertility index were the highest in the soil enriched with manure, followed by the soil combinations with tomato waste composts. Vegetable waste composts applied to the soil proved to be good carriers of Trichoderma sp. isolates. The study did not prove any antagonistic effect of Trichoderma sp. isolates on the proliferation of Alternaria sp. The growth and development of Fusarium sp. was inhibited by the Trichoderma – T3 strain on its own or in combination with isolate Trichoderma – T1. The yield of red beet roots and leaves was the highest in the combination with the mineral fertiliser and in the soil fertilised with the composts that had been simultaneously inoculated with two strains, i.e., Trichoderma – T1 and Trichoderma – T2, or Trichoderma – T1 and Trichoderma – T3.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

P.847-859,fig.,ref.

Twórcy

  • Department of General and Environmental Microbiology, Poznan University of Life Sciences,Szydłowska 50, 60-656 Poznan, Poland
autor
  • Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-656 Poznan, Poland
autor
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-656 Poznan, Poland
autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
autor
  • Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
  • Department of General and Environmental Microbiology, Poznan University of Life Sciences,Szydłowska 50, 60-656 Poznan, Poland
autor
  • Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
autor
  • Department of Agricultural Chemistry and Environmental Biogeochemistry, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland

Bibliografia

  • 1. POLISH CROP PROTECTION PRODUCTS REGULATION of 8 March 2013, Official Journal, Pos. 455, 2013 [In Polish].
  • 2. AGRICULTURE AND RURAL ECONOMY IN POLAND. Ministry of Agriculture and Rural Development, ISSN 1427-0757; 130, Warsaw, 2013 [In Polish].
  • 3. DIRECTIVE 2009/128/EC of the European Parliament and of the Council establishing a framework for Community action to achieve the sustainable use of pesticides. Official Journal of the European Union L 309, 71, 24 November 2009.
  • 4. YOU J., ZHANG J., WU M., YANG L., CHEN W., LI G. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biological Control. 101, 31, 2016.
  • 5. SZCZECH M., STANIASZEK M., HABDAS H., ULIŃSKI Z., SZYMAŃSKI J. Trichoderma spp.-The cause of green mold on Polish mushroom farms. Veg. Crops Res. Bull. 69,105, 2008.
  • 6. SCHUSTER A., SCHMOLL M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 87 (3), 787, 2010
  • 7. TOGHUEO R.M.K., EKE P., ZABALGOGEAZCOA I., RODRÍGUEZ VÁZQUEZ DE ALDANA B., NANA L.W., BOYOM F.F. Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of Common Bean Root Rot (Fusarium solani). Biological Control. 96, 8, 2016.
  • 8. ZHAO W., QI L. Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J Basic Microb. 53, 355, 2013.
  • 9. MUKHERJEE P.K., HORWITZ B.A., KENERLEY C.M. Secondary metabolism in Trichoderma - A genomic perspective. Microb. 158, 35, 2012.
  • 10. HAQUE MD.M., ILIAS G.N.M., MOLLA A.H. Impact of Trichoderma - enriched biofertilizer on the growth and yield of mustard (Brassica rapa L.) and tomato (Solanum lycopersicon Mill.). Sci. J Krishi Found. 10 (2), 109, 2012.
  • 11. BETTIOL W., MORANDI M.A.B. Trichoderma in Brazil: History, research, commercialization and perspectives, in: Duffy B., Maurhoffer M., Kell C., Gessler C. (Eds.), Molecular tools for understanding and improving biocontrol, Meeting of the Working Group “Biological control of fungal and bacterial plant pathogens”; 49, Interlaken, 2008.
  • 12. PIETR S., ŚLUSARSKI C. The Possibilities of using fungi of the genus Trichoderma, Horticult. Password 4, 27, 2007 [In Polish].
  • 13. PN-ISO 10381-2:2007 Soil quality – Collecting Samples - Part 2: The Rules of Collection Techniques. (in Polish)
  • 14. MARTIN J. P. Use of acid, rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 69, 215, 1950.
  • 15. AMANN R.I., KRUMHOLZ L., STAHL D.A. Fluorescentoligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology, J. Bacteriol. 172 (2), 762, 1990.
  • 16. SIDDIQUEE S., YUSOF N.A., SALLEH A.B., TAN S.G., BAKAR F.A., HENG L.Y. DNA hybridization based on Trichoderma harzianum gene probe immobilization on selfassembled monolayers on a modified gold electrode. Sensors and Actuators B: Chemical. 147, 198, 2010.
  • 17. KOMADA H. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Prot. Res. 8, 114, 1975.
  • 18. HONG B., PRYOR M. Development of selective media for the isolation and enumeration of Alternaria species from soil and plant debris. Can. J. Microbiol. 50, 461, 2004.
  • 19. ELLIS M.B. More Dematiaceous hyphomycetes, Commonwealth Mycological Institute; 507, Kew, Surrey, England, 1976.
  • 20. DOMSCH K.H., GAMS W., ANDERSON T.H. Compendium of soil fungi, ed. Academic Press; 406, San Francisco, 1993.
  • 21. KOZŁOWSKA M. Hypochytridioromycota, in: Mułenko W., Majewski T., Ruszkiewicz-Michalska M., ed. A preliminary checklist of micromycetes in Poland, Biodiversity of Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 9, 13, 2008 [In Polish].
  • 22. THALMANN A. Zur Methodik der Bestimmung der Dehydrogenase Aktivität in Boden mittels Triphenyltetrazoliumchlorid (TTC), Landwirt. Forsch. 21, 249, 1968.
  • 23. JOHNSON J.I., TEMPLE K.L. Some variables affecting the measurements of catalase activity in soil. Soil Sci. Soc. Am. Proc. 28, 207, 1964.
  • 24. STEFANIC F., ELLADE G., CHIRNAGEANU J. Researches concerning a biological index of soil fertility, in: Nemes M. P., Kiss S., Papacostea P., Stefanic C., Rusan M., ed. Proceeding of the Fifth Symposium of Soil Biology, Romanian National Society of Soil Science; 35, Bucharest, Romania, 1984.
  • 25. AHEMAD M., KHAN M.S. Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci. Biotechnol. 12, 213, 2009.
  • 26. WOLNA-MARUWKA A., KLAMA J., NIEWIADOMSKA A. Effect of the fertilization with the communal sewage sludge on the respiration activity and counts of selected microorganisms in the grey brown podzolic soil. Polish J Environ. Stud. 16 (6), 899, 2007.
  • 27. WYSZKOWSKA J., KUCHARSKI J., JANKOWSKI K., KIJEWSKI Ł. The influence of post-harvest residue on the activity of soil enzymes. Adv. Agri. Sci. Probl. Issues. 537, 403, 2009 [In Polish].
  • 28. VALLANCE J., DENIEL F., FLOCH G. L., REY P. Pathogenic and A. beneficial microorganisms in soilless cultures. Agron. Sustain. Dev. 31, 191, 2011.
  • 29. KUCHARSKI J., WYSZKOWSKA J. The influence of agriculture on the microbiological soils properties, in: The impact of agriculture on the environment in terms of climate change. IUNG-PIB, Studies and Dissertation, Pulawy, 19, 37, 2010 [In Polish].
  • 30. GARBEVA P., VAN VEEN J.A., VAN ELSAS J.D. Microbial diversity in soil: Selection of microbial populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annu. Rev. Phytopathol. 42, 243, 2004.
  • 31. KREDICS L., ANTAL Z., MANCZINGER L., SZEKERES A., KEVEI F., NAGY E. Trichoderma strains with biocontrol potential. Food Technol. Biotechnol. 41, (1), 37, 2003.
  • 32. UTAMA M.S., WILLS R.B.H, BEN-YEHOSHUA S., KUEK C. In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. J. Agric. Food Chem. 50, 6371, 2002.
  • 33. STEINKA I., KUKUŁOWICZ A. The biostatic influence of plant pulp and solutions on staphylococci. Bromat. Chem. Toksykol. XLI (2), 191, 2008.
  • 34. LEE J. Effect of application methods of organic fertilizer on growth, soil chemical properties and microbial densities in organic bulb onion production Sci. Hortic. 124, 299, 2010.
  • 35. GEISSELER D., SCOW K. M. Long-term effects of mineral fertilizers on soil microorganisms – A review. Soil Biology and Biochemistry. 75, 54, 2014.
  • 36. HEINZE S., RAUPP J., JOERGENSEN R. G. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant and Soil. 328 (1), 203, 2010.
  • 37. LOU J., FU L., PENG Y., ZHOU L. Metabolites from Alternaria fungi and their bioactivities. Molec. 18 (5), 5891, 2013.
  • 38. BART P.H.J.T. Pathogen profile Alternaria spp.: from general saprophyte to specific parasite. Mole. Plant Path. 4 (4), 225, 2003.
  • 39. WOLNA-MARUWKA A., NIEWIADOMSKA A., KLAMA J. Biological activity of grey-brown podzolic soil organically fertilized for maize cultivation in monoculture. Polish J Environ. Stud. 18 (5), 931, 2009.
  • 40. GÓRSKA E. B., STĘPIEŃ W., RUSSEL S. Effect of sewage sludge, chicken droppings and Dano compost addition on microbiological activity of the soil and yields of the red bee. Adv. Agri. Sci. Probl. Issues. 520, 287, 2007 [In Polish).
  • 41. TAGOE D.N.A., NYARKO H.D., ALPAKA R. A comparison of the antifungal properties of onion (Allium cepa), ginger (Zingiber officinale) and garlic (Allium sativum) against Aspergillus flavus, Aspergillus niger and Cladosporium herbarum. Res. J Med. Plant. 5, 281, 2011.
  • 42. STONE G., VALLAD G.E., COOPERBAND L.R., ROTENBERG D., DARBY H.M., JAMES R.V., STEVENSON W.R., GOODMAN R.M. Effect of organic amendments on soilborne and foliar diseases in field-grown snap bean and cucumber. Plant Dis. 87 (9), 1037, 2003.
  • 43. WYSZKOWSKA J., WYSZKOWSKI M. Activity of soil dehydrogenases, urease and acid and alkaline phosphatases in soil polluted with petroleum. J Toxicol. Environ. Health, Part A. 73 (17-18), 1202, 2010.
  • 44. MEENA M.D., JOSHI P.K., JAT H.S., CHINCHMALATPURE A. R., NARJARY B., SHEORAN P., SHARMA D.K. Changes in biological and chemical properties of saline soil amended with municipal solid waste compost and chemical fertilizers in a mustard–pearl millet cropping system. Catena. 140, 1, 2016.
  • 45. ACOSTA-MARTINEZ V., TABATABAI M.A. Enzyme activities in a limed agricultural soil. Biol. Fert. Soils. 31, 85, 2000.
  • 46. WOLNA-MARUWKA A., SCHROETER-ZAKRZEWSKA A., BOROWIAK K., NIEWIADOMSKA A. Impact of microbiological inoculum on numbers and activity of microorganisms in peat substrate and on growth and flowering of scarlet sage. Polish J Environ. 21 (6), 357, 2012.
  • 47. YAO X., MIN H., LU Z., YUAN H. Influence of acetamipiryd on soil enzymatic activity and respiration. Eur. J. Soil Biol. 42, 120, 2006.
  • 48. WATTS D.B., TORBERT H.A., FENG Y., PRIOR A. Soil microbial community dynamics as influenced by composted dairy manure, soil properties and landscape position. Soil Sci. 175 (10), 474, 2010.
  • 49. MEENA V.S., MAURYA B.R., MEENA R.S., MEENA S.K., SINGH N.P., MALIK V.K., KUMAR V., JAT L.K. Microbial dynamics as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi, India. Afr. J Microbiol. Res. 8 (3), 257, 2014.
  • 50. PAAVOLA T., RINTALA J. Effects of storage on characteristics and hygienic quality of digestates from four co-digestion concepts of manure and biowaste. Bioresour. Technol. 99, 7041, 2008.
  • 51. BAL U., ALTINTAS S. A positive side effect from Trichoderma harzianum, the biological control agent: Increased yield in vegetable crops. J Environ. Prot. Ecol. 7, 383, 2006.
  • 52. VINALE F., SIVASITHAMPARAM K., GHISALBERTI E.L., MARRA R., WOO S.L., LORITO M. Trichodermaplant-pathogen interactions. Soil Biol. Biochem. 40, 1, 2008.
  • 53. HAQUE MD.M., ILIAS G.N.M, MOLLA A.H. Impact of Trichoderma-enriched biofertilizer on the growth and yield of mustard (Brassica rapa L.) and tomato (Solanum lycopersicon Mill.). Sci. J Krishi Found. 10, (2), 109, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-24923000-e843-4d83-bb2c-8f2b6b8fd92a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.