PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 62 | 2 |

Tytuł artykułu

Antibacterial activity of Tribulus terrestris methanol extract against clinical isolates of Escherichia coli

Treść / Zawartość

Warianty tytułu

PL
Działanie antybakteryjne wyciągu etanolowego z Tribulus terrestris na kliniczne izolaty Escherichia coli

Języki publikacji

EN

Abstrakty

EN
Introduction: Tribulus terrestris L. is traditionally used for treatment of urinary tract infections. Escherichia coli, as the most prominent agent of urinary tract infections, can be sensitive to T. terrestris extract. Objectives: The aim of this study was to evaluate the antibacterial activity of T. terrestris methanol extract against clinical isolates of E. coli from urinary tract infections. Saponins were determined as main constituents of T. terrestris methanol extract. Methods: The antibacterial activities of T. terrestris methanol extract were evaluated by micro-broth dilution assay. The synergistic effects of T. terrestris methanol extract were screened with gentamicin by micro titer plate and disc diffusion assays. The isobologram curve was figured and the Fractional Inhibitory Concentration Index (FICI) was determined. Results: The saponin content of T. terrestris methanol extract was 54% (w/w). The means of MIC and MBC values for E. coli clinical isolates (n=51) were 3.5±0.27 and 7.4±0.5 mg/ml while these amounts were 3.9±1.3 and 6.4±1.8 μg/ml for gentamicin. T. terrestris methanol extract and gentamicin had synergistic effect with FICI equal to 0.1375. Conclusion: Therefore, T. terrestris can be applicable as alternative treatment in management of urinary tract infections.
PL
Wstęp: Tribulus terrestris L. jest tradycyjnie stosowany w leczeniu zakażeń układu moczowego. Escherichia coli, jako główny czynnik zakażeń tego układu, może wykazywać wrażliwość na działanie ekstraktu z T. terrestris.Cel: Celem badań było określenie aktywności przeciwbakteryjnej ekstraktu metanolowego uzyskanego z ziela T. terrestris w stosunku do szczepów E. coli izolowanych od osób z zakażeniami układu moczowego. Metody: Działanie przeciwbakteryjne ekstraktu metanolowego z T. terrestris określano metodą rozcieńczeń w pożywce płynnej. Działanie synergistyczne ekstraktu metanolowego z T. terrestris z gentamycyną badano metodą krążków bibułowych w podłożu agarowym. Na tej podstawie wyznaczono krzywą izobolograficzną oraz ułamkowe stężenie hamujace dla obu substancji (Fractional Inhibitory Concentration Index – FICI). Wyniki: Zawartość saponin w ekstrakcie metanolowym z T. terrestris wynosiła 54% (w/w). Średnie wartości MIC i MBC dla szczepów klinicznych E. coli (n=51) wynosiły odpowiednio 3,5±0,27, 7,4±0,5 mg/ml, a dla gentamycyny odpowiednio 3,9±1,3 i 6,4±1,8 µg/ml. Ekstrakt metanolowy i gentamycyna wykazywały działanie synergistyczne na poziomie FICI równego 0,1375. Wniosek: Wykazano, że ekstrakt metanolowy z ziela T. terrestris, może być stosowany jako alternatywny środek do leczenia zakażeń układu moczowego.

Wydawca

-

Czasopismo

Rocznik

Tom

62

Numer

2

Opis fizyczny

p.57-66,fig.,ref.

Twórcy

autor
  • Biology Department, Faculty of Sciences, Borujerd Branch Islamic Azad University, Borujerd, Iran
autor
  • Microbiology Department, Medicinal Plant Research, Center of Barij, Kashan, Iran
autor
  • Biology Department, Faculty of Sciences, Borujerd Branch Islamic Azad University, Borujerd, Iran

Bibliografia

  • 1. Al-Bayati FA, Al-Mola HF. Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq. J Zhejiang Univ Sci B 2008; 9:154-159.
  • 2. Wu TS, Shi LS, Kuo SC. Alkaloids and other constituents from Tribulus terrestris. Phytochemistry 1999; 50:1411-1415. doi: http://dx.doi.org/10.1631/jzus.b0720251
  • 3. Chhatre S, Nesari T, Somani G, Kanchan D, Sathaye S. Phytopharmacological overview of Tribulus terrestris. Pharmacogn Rev 2014; 8:45-51. doi: http://dx.doi.org/10.4103/0973-7847.125530
  • 4. Dogruoz N, Zeybek Z, Karagoz A. Antibacterial activity of some plant extracts. IUFS J Biol 2008; 67:17-21.
  • 5. Oh HK, Park SJ, Moon HD, Jun SH, Choi NY, You YO. Tribulus terrestris inhibits caries-inducing properties of Streptococcus mutans. J Med Plants Res 2011; 5:6061-6096.
  • 6. Bonacorsi S, Bingen E. Molecular epidemiology of Escherichia coli causing neonatal meningitis. Int J Med Microbiol 2005; 295(6):373-381. doi: http://dx.doi.org/10.1016/j.ijmm.2005.07.011
  • 7. Burt SA, van der Zee R, Koets AP, de Graaff AM, van Knapen F, Gaastra W, et al. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157: H7. J Appl Environ Microbiol 2007; 73(14):4484-4490. doi: http://dx.doi.org/10.1128/aem.00340-07
  • 8. Furyk JS, Swann O, Molyneux E. Systematic review: neonatal meningitis in the developing world. Tropical Med Intern Health 2011; 16(6):672-679. doi: http://dx.doi.org/10.1111/j.1365-3156.2011.02750.x
  • 9. Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol 2004; 2(2):123-140. doi: http://dx.doi.org/10.1038/nrmicro818 10. Ron EZ. Distribution and evolution of virulence factors in septicemic Escherichia coli. Int J Med Microbiol 2010; 300(6):367-370. doi: http://dx.doi.org/10.1016/j.ijmm.2010.04.009
  • 11. Arshad M, Seed PC. Urinary tract infections in the infant. Clin Perinatol 2015; 42(1):17-28. doi: http://dx.doi.org/10.1016/j.clp.2014.10.003
  • 12. Saltoglu N, Karali R, Yemisen M, Ozaras R, Balkan II, Mete B, et al. Comparison of community onset healthcare associated and hospital acquired urinary infections caused by extended spectrum beta lactamase producing Escherichia coli and antimicrobial activities. Int J Clin Pract 2015; 69(7):766-770. doi: http://dx.doi.org/10.1111/ijcp.12608
  • 13. Mobasheri M, Varnamkhast NS, Karimi A, Banaeiyan S. Prevalence study of genital tract infections in pregnant women referred to health centers in Iran. Turk J Med Sci 2014; 44(2):232-236. doi: http://dx.doi.org/10.3906/sag-1208-33
  • 14. Salamati P, Rahbarimanesh AA, Yunesian M, Naseri M. Neonatal nosocomial infections in Bahrami children hospital. Indian J Pediatr 2006; 73(3):197-200. doi: http://dx.doi.org/10.1007/bf02825479
  • 15. Rezaee MA, Sheikhalizadeh V, Hasani A. Detection of integrons among multi-drug resistant (MDR) Escherichia coli strains isolated from clinical specimens in northern west of Iran. Braz J Microbiol 2011; 42(4):1308-1313. doi: http://dx.doi.org/10.1590/s1517-83822011000400010
  • 16. Wu RB, Alexander TW, Li JQ, Munns K, Sharma R, McAllister TA. Prevalence and diversity of class 1 integrons and resistance genes in antimicrobial resistant Escherichia coli originating from beef cattle administered subtherapeutic antimicrobials. J Appl Microbiol 2011; 111(2):511-523. doi: http://dx.doi. org/10.1111/j.1365-2672.2011.05066.x
  • 17. Wooltorton E. Ototoxic effects from gentamicin ear drops. Can Urol Assoc J 2002; 167(1):56. doi: http://dx.doi.org/10.1080/00016480119705
  • 18. Mahboubi M, Haghi G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J Ethnopharmacol 2008; 119(2):325-327. doi: http://dx.doi.org/10.1016/j.jep.2008.07.023
  • 19. Mahboubi M, Bidgoli F. Antistaphylococcal activity of Zataria multiflora essential oil and its synergy with vancomycin. Phytomedicine 2010; 17(7):548-550. doi: http://dx.doi.org/10.1016/j.phymed.2009.11.004
  • 20. Avijgan M, Mahboubi M, Nasab MM, Nia EA, Yousefi H. Synergistic activity between Echinophora platyloba DC ethanolic extract and azole drugs against clinical isolates of Candida albicans from women suffering chronic recurrent vaginitis. Med Mycol J 2014; 24(2):112-116. doi: http://dx.doi.org/10.1016/j.mycmed.2014.01.116
  • 21. Baburao B, Rajyalakshmi G, Venkatesham A, Kiran G, Sunder AS, Rao BG. Anti-inflammatory and antimicrobial activities of methanolic extract of Tribulus terrestris linn plant. Int J Chem Sci 2009; 7(3):1867-1872. doi: http://dx.doi.org/10.5580/d52
  • 22. Joshi DD, Uniyal RC. Different chemotypes of Gokhru (Tribulus terrestris): A herb used for improving physique and physical performance. Intern J Green Pharm 2008; 2(3):158-161. doi: http://dx.doi.org/10.4103/0973-8258.42734
  • 23. Kannabiran K, Mohankumar T, Gunaseker V. Evaluation of antimicrobial activity of saponin isolated from Solanum xanthocarpum and Centella asiatica. Intern J Nat Engin Sci 2009; 3(1):22-25. doi: http://dx.doi.org/10.1016/s0378-8741(98)00141-x
  • 24. Mandal P, Sinha Babu SP, Mandal NC. Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia 2005; 76(5):462-465. doi: http://dx.doi.org/10.1016/j.fitote.2005.03.004
  • 25. Soetan KO, Oyekunle MA, Aiyelaagbe OO, Fafunso MA. Evaluation of the antimicrobial activity of saponins extract of Sorghum bicolor L. Moench Afr J Biotechnol 2006; 5(23):2405-2407. doi: http://dx.doi.org/10.9734/ejmp/2014/7847
  • 26. Arabski M, Wasik S, Dworecki K, Kaca W. Laser interferometric and cultivation methods for measurement of colistin/ampicilin and saponin interactions with smooth and rough of Proteus mirabilis lipopolysaccharides and cells. J Microbiol Methods 2009; 77(2):178-183. doi: http://dx.doi.org/10.1016/j.mimet.2009.01.020
  • 27. Arabski M, Węgierek-Ciuk A, Czerwonka G, Lankoff A, Kaca W. Effects of saponins against clinical E. coli strains and eukaryotic cell line. J Biomed Biotechnol 2012; Article ID 286216, 6 pages. doi: http://dx.doi.org/10.1155/2012/286216
  • 28. Chwalek M, Lalun N, Bobichon H, Ple K, Voutquenne-Nazabadioko L. Structure-activity relationships of some hederagenin diglycosides: haemolysis, cytotoxicity and apoptosis induction. Biochim Biophys Acta 2006; 1760:1418-1427. doi: http://dx.doi.org/10.1016/j.bbagen.2006.05.004
  • 29. Kostova I, Dinchev D. Saponins in Tribulus terrestris – chemistry and bioactivity. Phytochem Rev 2005; 4(2-3):111-137. doi: http://dx.doi.org/10.1007/s11101-005-2833-x
  • 30. Hood JR, Wilkinson JM, Cavanagh HMA. Evaluation of common antibacterial screening methods utilized in essential oil research. J Essential Oil Res 2003;15(6):428-433. doi: http://dx.doi.org/10.1080/10412905.2003.9698631
  • 31. De Lucca AJ, Bland JM, Boue S, Vigo CB, Cleveland TE, Walsh TJ. Synergism of CAY-1 with amphotericin B and itraconazole. Chemotherapy 2006; 52(6):285-287. doi: http://dx.doi.org/10.1159/000095959
  • 32. Yang X, Zhang H. Synergistic interaction of tea saponin with mancozeb against Pestalotiopsis theae. Crop Protection 2012; 40(0):126-131. doi: http://dx.doi.org/10.1016/j.cropro.2012.04.013
  • 33. Schmidt S, Heimesaat M, Fischer A, Bereswill S, Melzig M. Saponins increase susceptibility of vancomycin-resistant enterococci to antibiotic compounds. Eur J Microbiol Immunol 2014; 4(4):204-212. doi: http://dx.doi.org/10.1556/eujmi-d-14-00029

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-248b1314-2d29-4af1-8d4c-a09b72be04a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.