PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 5 |

Tytuł artykułu

An improved SWAT for predicting manganese pollution load at the soil-water interface in a manganese mine area

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The prediction of heavy metal pollution load at the soil-water interface of a mining area was studied through an improved soil and water assessment tool (SWAT) model. The Red Flag Mining Area of Xiangtan Manganese Mine in Hunan Province, China, was selected as the research district. GPS, ARCGIS, RS technology, and field experiments were employed in this study. A modified one-dimensional migration model was embedded in the sediment migration source module of SWAT in order to establish an Improved SWAT model for the prediction of manganese pollution load at the soil-water interface. The key pollution areas identified by the improved model were consistent with actual mine pollution, with the Nash-Sutcliffe efficiency Ens and regression R² coefficients of 0.88 and 0.91, respectively. The study would provide the theoretical foundation and scientific basis for management and repair at the site.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

5

Opis fizyczny

p.2357-2365,fig.,ref.

Twórcy

autor
  • Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, China
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
autor
  • Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, China
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
  • Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, China
  • School of Science and Sport, University of the West of Scotland, Paisley, United Kingdom
autor
  • Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, China
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
autor
  • Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, China
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China

Bibliografia

  • 1. REN B., LIU B., ZHENG X., ZHOU Y. Source analysis of heavy metal in contaminated flow from soil-water interfaces in manganese ore zone. Environmental Pollution & Control., 2014 [In Chinese].
  • 2. COSTA G.B., SIMIONI C., RAMLOV F., MARASCHIN M., CHOW F., BOUZON Z.L., SCHMIDT É.C. Effects of manganese on the physiology and ultrastructure of Sargassum cymosum. Environ. Exp. Bot. 133, 24, 2017.
  • 3. FADEL M., HASSANEIN N.M., ELSHAFEI M.M., MOSTAFA A.H., AHMED M.A., KHATER H.M. Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae. HBRC Journal. 13, 106, 2017.
  • 4. TEPANOSYAN G., MAGHAKYAN N., SAHAKYAN L., SAGHATELYAN A. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotox. Environ. Safe. 142, 257, 2017.
  • 5. SHEN Z.J., XU D.C., CHEN Y.S., ZHANG Z. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China. Ecotox. Environ. Safe. 143, 19, 2017.
  • 6. SOMMERLOT A.R., WAGENA M.B., FUKA D.R., EASTON Z.M. Coupling the short-term global forecast system weather data with a variable source area hydrologic model. Environ. Modell. Softw. 86, 68, 2016.
  • 7. SHI Y., XU G., WANG Y., ENGEL B.A., PENG H., ZHANG W., CHENG M., DAI M. Modelling hydrology and water quality processes in the Pengxi River basin of the Three Gorges Reservoir using the soil and water assessment tool. Agr. Water Manage. 182, 24, 2017.
  • 8. GOLMOHAMMADI G., RUDRA R., DICKINSON T., GOEL P., VELIZ M. Predicting the temporal variation of flow contributing areas using SWAT. J. Hydrol. 547, 375, 2017.
  • 9. SINNATHAMBY S., DOUGLAS-MANKIN K.R., CRAIGE C. Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT). Agr. Water Manage. 180, Part A, 61, 2017.
  • 10. WOLDESENBET T.A., ELAGIB N.A., RIBBE L., HEINRICH J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 575, 724, 2017.
  • 11. EVENSON G.R., GOLDEN H.E., LANE C.R., D AMICO E. Geographically isolated wetlands and watershed hydrology: A modified model analysis. J. Hydrol. 529 (1), 240, 2015.
  • 12. WANG R., BOWLING L.C., CHERKAUER K.A., CIBIN R., HER Y., CHAUBEY I. Biophysical and hydrological effects of future climate change including trends in CO₂, in the St. Joseph River watershed, Eastern Corn Belt. Agr. Water Manage. 180 (B), 280, 2017.
  • 13. ROMAGNOLI M., PORTAPILA M., RIGALLI A., MAYDANA G., BURGUÉS M., GARCÍA C.M. Assessment of the SWAT model to simulate a watershed with limited available data in the Pampas region, Argentina. Sci. Total Environ. 596-597, 437, 2017.
  • 14. MOLINA-NAVARRO E., ANDERSEN H.E., NIELSEN A., THODSEN H., TROLLE D. The impact of the objective function in multi-site and multi-variable calibration of the SWAT model. Environ. Modell. Softw. 93, 255, 2017.
  • 15. CHEN H., LUO Y., POTTER C., MORAN P.J., GRIENEISEN M.L., ZHANG M. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT. Water Res. 121, 374, 2017.
  • 16. VIGIAK O., MALAGÓ A., BOURAOUI F.A., VANMAERCKE M., OBREJA F., POESEN J., HABERSACK H., FEHÉR J., GRO ELJ S. Modelling sediment fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 599-600, 992, 2017.
  • 17. ZHANG S., FAN W., LI Y., YI Y. The influence of changes in land use and landscape patterns on soil erosion in a watershed. Sci. Total Environ. 574, 34, 2017.
  • 18. HUANG H., OUYANG W., WU H., LIU H., ANDREA C. Long-term diffuse phosphorus pollution dynamics under the combined influence of land use and soil property variations. Sci. Total Environ. 579, 1894, 2017.
  • 19. SOMMERLOT A.R., WAGENA M.B., FUKA D.R., EASTON Z.M. Coupling the short-term global forecast system weather data with a variable source area hydrologic model. Environ. Modell. Softw. 86, 68, 2016.
  • 20. ALIGHALEHBABAKHANI F., MILLER C.J., SELEGEAN J.P., BARKACH J., SADATIYAN ABKENAR S.M., DAHL T., BASKARAN M. Estimates of sediment trapping rates for two reservoirs in the Lake Erie watershed: Past and present scenarios. J. Hydrol. 544, 147, 2017.
  • 21. KIM M., BOITHIAS L., CHO K.H., SILVERA N., THAMMAHACKSA C., LATSACHACK K., ROCHELLE-NEWALL E., SENGTAHEUANGHOUNG O., PIERRET A., PACHEPSKY Y.A., RIBOLZI O. Hydrological modeling of Fecal Indicator Bacteria in a tropical mountain catchment. Water Res. 119, 102, 2017.
  • 22. ROSSINI E., KNAPP E. Protonation equilibria of transition metal complexes: From model systems toward the Mn-complex in photosystem II. Coordin. Chem. Rev. 345, 16, 2017.
  • 23. VERNUCCIO S., GOY R., MEIER A., RUDOLF VON ROHR P., MEDLOCK J. Kinetics and mass transfer of the hydrogenation of 2-methyl-3-butyn-2-ol in a structured Pd/ZnO/Al₂O₃ reactor. Chem. Eng. J. 316, 121, 2017.
  • 24. GUIZA S. Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel. Ecol. Eng. 99, 134, 2017.
  • 25. Lin Y. Study on the sediment transport model of mercury polluted river. Acta Scientiae Circumstantiae, 3, 276, 1985 [In Chinese].
  • 26. AMIN M.G.M., VEITH T.L., COLLICK A.S., KARSTEN H.D., BUDA A.R. Simulating hydrological and nonpoint source pollution processes in a karst watershed: A variable source area hydrology model evaluation. Agr. Water Manage. 180 (B), 212, 2017.
  • 27. ZCAN Z., BA KAN O.U., DÜZGÜN H.E., KENTEL E.I., ALP E. A pollution fate and transport model application in a semi-arid region: Is some number better than no number? Sci. Total Environ. 595, 425, 2017.
  • 28. PARK Y., CHO K.H., PARK J., CHA S.M., KIM J.H. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Sci. Total Environ. 502, 31, 2015.
  • 29. YOUNGWOOK J., DONGSHIG O., MEEJEONG K., JAEWOO P. Calibration of LEACHN model using LHOAT sensitivity analysis. Nutr. Cycl. Agroecosys. 87, 261, 2010.
  • 30. DUAN Q., SOROOSHIAN S., GUPTA V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 158, 265, 1994.
  • 31. KETABCHI H., ATAIEASHTIANI B. Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges. J. Hydrol. 520, 193, 2015.
  • 32. GHORBANI M.A., KHATIBI R., GOEL A., FAZELIFARD M.H., AZANI A. Modeling river discharge time series using support vector machine and artificial neural networks. Environ. Earth Sci. 75, 1, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-24750691-9ede-4797-9510-62dc2fb1343e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.