PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 57 | 4 |

Tytuł artykułu

Evaluation of resistance and the role of some defense responses in wheat cultivars to Fusarium head blight

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fusarium graminearum and F. culmorum are the causal agents of Fusarium head blight (FHB) in cereal crops worldwide. Application of resistant cultivars is the most effective and economic method for management of FHB and reducing mycotoxin production in wheat. Understanding the physiological and biochemical mechanisms involved in basal resistance of wheat to FHB disease is limited. In this research, after screening resistance levels of eighteen wheat cultivars planted in Iran, Gaskozhen and Falat were identified as partially resistant and susceptible wheat cultivars against Fusarium spp., respectively. Also, we investigated the role of hydroxyl radical (OH−), nitric oxide (NO), callose deposition, lipid peroxidation and protein content in basal resistance of wheat to the hemi-biotrophic and necrotrophic Fusarium species causing FHB. Nitric oxide as a signaling molecule may be involved in physiological and defensive processes in plants. Our results showed that NO generation increased in seedlings and spikes of wheat cultivars after inoculation with Fusarium species. We observed earlier and stronger callose deposition at early time points after infection by Fusarium spp. isolates than in non-infected plants, which was positively related to the resistance levels in wheat cultivars. Higher levels of OH− and malondialdehyde (MDA) accumulation (as a marker of lipid peroxidation) were observed in the Falat than in the Gaskozhen cultivar, under non-infected and infected conditions. So, estimation of lipid peroxidation could be useful to evaluate cultivars’ susceptibility. These findings can provide novel insights for better recognition of physiological and biochemical markers of FHB resistance, which could be used for rapid screening of resistance levels in wheat cultivars against this destructive fungal disease.

Wydawca

-

Rocznik

Tom

57

Numer

4

Opis fizyczny

p.396-408,fig.,ref.

Twórcy

autor
  • Department of Crop Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O.Box 91775-1163, Mashhad, Iran
autor
  • Department of Crop Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O.Box 91775-1163, Mashhad, Iran
  • Department of Crop Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O.Box 91775-1163, Mashhad, Iran

Bibliografia

  • Altinok H.H., Dikilitas M. 2014. Antioxydant response to biotic and abiotic inducers for the resistance against fusarium wilt disease in eggplant (Solanum melongena L.). Acta Botanica Croatica 73 (1): 79–92. DOI: https://doi.org/10.2478/botcro-2013-0014
  • Amarasinghe C.C., Tamburic-Ilincic L., Gilbert J., Brûlé-Babel A.L., Fernando W.G.D. 2013. Evaluation of different fungicides for control of fusarium head blight in wheat inoculated with 3ADON and 15ADON chemotypes of Fusarium graminearum in Canada. Canadian Journal of Plant Pathology 35 (2): 200–208. DOI: https://doi.org/10.1080/07060661.2013.773942
  • Ayala A., Muñoz M.F., Argüelles S. 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity 2014, 31 pages. DOI:https://doi.org/10.1155/2014/360438
  • Bahieldin A., Mahfouz H.T., Eissa H.F., Saleh O.M., Ramadan A.M., Ahmed I.A., Dyer W.E., El-Itriby H.A., Madkour M.A. 2005. Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiologia Plantarum 123 (4): 421–427. DOI: https://doi.org/10.1111/j.1399-3054.2005.00470.x
  • Bernardo A., Bai G., Guo P., Xiao K., Guenzi A.C., Ayoubi P. 2007. Fusarium graminearum-induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivars. Functional & Integrative Genomics 7 (1): 69–77. DOI: https://doi.org/10.1007/s10142-006-0028-1
  • Blümke A., Falter C., Herrfurth C., Sode B., Bode R., Schäfer W., Feussner I., Voigt C.A. 2014. Secreted fungal effector lipase releases free fatty acids to inhibit innate immunityrelated callose formation during wheat head infection. Plant Physiology 165 (1): 346–358. DOI: https://doi.org/10.1104/pp.114.236737
  • Bradford M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 72 (1–2): 248–254. DOI: https://doi.org/10.1006/abio.1976.9999
  • Browne R.A., Cooke B.M. 2004. Development and evaluation of an in vitro detached leaf assay for pre-screening resistance to Fusarium head blight in wheat. European Journal of Plant Pathology 110 (1): 91–102. DOI: https://doi.org/10.1023/b:ejpp.0000010143.20226.21
  • Buerstmayr M., Buerstmayr H. 2015. Comparative mapping of quantitative trait loci for Fusarium head blight resistance and anther retention in the winter wheat population Capo × Arina. Theoretical and Applied Genetics 128 (8): 1519–1530. DOI: https://doi.org/10.1007/s00122-015-2527-8
  • Chakraborty U., Pradhan B. 2012. Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Brazilian Journal of Plant Physiology 24 (2): 117–130. DOI: https://doi.org/10.1590/s1677-04202012000200005
  • Chen F., Wang F., Sun H.Y., Cai Y., Mao W.H., Zhang G.P., Eva V., Wu F.B. 2010. Genotype-dependent effect of exogenous nitric oxide on Cd-induced changes in antioxidative metabolism, ultrastructure, and photosynthetic performance in barley seedlings (Hordeum vulgare). Journal of Plant Growth Regulation 29 (4): 394–408. DOI: https://doi.org/10.1007/s00344-010-9151-2
  • Chen X.R., Wang X.L., Zhang Z.G., Wang Y.C., Zheng X.B. 2008. Differences in the induction of the oxidative burst in compatible and incompatible interactions of soybean and Phytophthora sojae. Physiological and Molecular Plant Pathology 73 (1–3): 16–24. DOI: https://doi.org/10.1016/j.pmpp.2008.10.002
  • Chen X.Y., Kim J.Y. 2009. Callose synthesis in higher plants. Plant Signaling & Behavior 4 (6): 489–492. DOI: https://doi.org/10.4161/psb.4.6.8359
  • Collins N.C., Thordal-Christensen H., Lipka V., Bau S., Kombrink E., Qiu J.L., Hückelhoven R., Stein M., Freialdenhoven A., Somerville S.C., Schulze-Lefert P. 2003. SNAREprotein-mediated disease resistance at the plant cell wall. Nature 425 (6961): 973–977. DOI: https://doi.org/10.1038/nature02076
  • Das K., Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2: 53. DOI: https://doi.org/10.3389/fenvs.2014.00053
  • Debona D., Rodrigues F.Á., Rios J.A., Nascimento K.J.T. 2012. Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology 102 (12): 1121–1129.DOI: https://doi.org/10.1094/phyto-06-12-0125-r
  • Desmond O.J., Manners J.M., Stephens A.E., MacLean D.J., Schenk P.M., Gardiner D.M., Munn A.L., Kazan K. 2008. The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Molecular Plant Pathology 9 (4): 435–445. DOI: https://doi.org/10.1111/j.1364-3703.2008.00475.x
  • Dmochowska-Boguta M., Nadolska-Orczyk A., Orczyk W. 2013. Roles of peroxidases and NADPH oxidases in the oxidative response of wheat (Triticum aestivum) to brown rust (Puccinia triticina) infection. Plant Pathology 62 (5): 993–1002.DOI: https://doi.org/10.1111/ppa.12009
  • Duan X., Li X., Ding F., Zhao J., Guo A., Zhang L., Yao J., Yang Y. 2015. Interaction of nitric oxide and reactive oxygen species and associated regulation of root growth in wheat seedlings under zinc stress. Ecotoxicology and Environmental Safety 113: 95–102. DOI: https://doi.org/10.1016/j.ecoenv.2014.11.030
  • Ellinger D., Sode B., Falter C., Voigt C.A. 2014. Resistance of callose synthase activity to free fatty acid inhibition as an indicator of Fusarium head blight resistance in wheat. Plant Signaling & Behavior 9 (7): e28982. DOI: https://doi.org/10.4161/psb.28982
  • Esim N., Atici O., Mutlu S. 2014. Effects of exogenous nitric oxide in wheat seedlings under chilling stress. Toxicology and Industrial Health 30 (3): 268–274. DOI: https://doi.org/10.1177/0748233712457444
  • Forrer H.R., Musa T., Schwab F., Jenny E., Bucheli T.D., Wettstein F.E., Vogelgsang S. 2014. Fusarium head blight control and prevention of mycotoxin contamination in wheat with botanicals and tannic acid. Toxins 6 (3): 830–849. DOI:https://doi.org/10.3390/toxins6030830
  • Galatro A., Puntarulo S., Guiamet J.J., Simontacchi M. 2013. Chloroplast functionality has a positive effect on nitric oxide level in soybean cotyledons. Plant Physiology and Biochemistry 66: 26–33. DOI: https://doi.org/10.1016/j.plaphy.2013.01.019
  • Gaupels F., Kuruthukulangarakoola G.T., Durner J. 2011. Upstream and downstream signals of nitric oxide in pathogen defence. Current Opinion in Plant Biology 14 (6): 707–714.DOI: https://doi.org/10.1016/j.pbi.2011.07.005
  • Gherbawy Y.A., El-Tayeb M.A., Maghraby T.A., Shebany Y.M., El-Deeb B.A. 2012. Response of antioxidant enzymes and some metabolic activities in wheat to Fusarium spp. infections. Acta Agronomica Hungarica 60 (4): 319–333. https://doi.org/10.1556/aagr.60.2012.4.3
  • Gill T.A., Li J., Saenger M., Scofield S.R. 2016. Thymol-based submicron emulsions exhibit antifungal activity against Fusarium graminearum and inhibit Fusarium head blight (FHB) in wheat. Journal of Applied Microbiology 121 (4): 1103–1116. DOI: https://doi.org/10.1111/jam.13195
  • Gomez-Gomez L., Felix G., Boller T. 1999. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. The Plant Journal 18 (3): 277–284. DOI: https://doi.org/10.1046/j.1365-313x.1999.00451.x
  • Gündüz K., Özdemir E. 2014. The effects of genotype and growing conditions on antioxidant capacity, phenolic compounds, organic acid and individual sugars of strawberry. Food Chemistry 155: 298–303. DOI: https://doi.org/10.1016/j.foodchem.2014.01.064
  • Guo P., Cao Y., Li Z., Zhao B. 2004. Role of an endogenous nitric oxide burst in the resistance of wheat to stripe rust. Plant, Cell and Environment 27 (4): 473–477. DOI: https://doi.org/10.1111/j.1365-3040.2003.01165.x
  • Halliwell B., Gutteridge J.M.C., Auroma O. 1987. The deoxyribose method: a simple ‘test tube’ assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry 165 (1): 215–219. DOI: https://doi.org/10.1016/0003-2697(87)90222-3
  • Haynes C.M., Titus E.A., Cooper A.A. 2004. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Molecular Cell 15 (5): 767–776. DOI: https://doi.org/10.1016/j.molcel.2004.08.025
  • Hematy K., Cherk C., Somerville S. 2009. Host-pathogen warfare at the plant cell wall. Current Opinion in Plant Biology 12 (4): 406–413. DOI: https://doi.org/10.1016/j.pbi.2009.06.007
  • Hill B.G., Dranka B.P., Bailey S.M., Lancaster J.R.J., Darley-Usmar V.M. 2010. What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology. The Journal of Biological Chemistry 285 (26): 19699–19704. DOI: https://doi.org/10.1074/jbc.r110.101618
  • Hirano Y., Pannatier E.G., Zimmermann S., Brunner I. 2004. Induction of callose in roots of Norway spruce seedlings after short-term exposure to aluminum. Tree Physiology 24 (11): 1279–1283. DOI: https://doi.org/10.1093/treephys/24.11.1279
  • Hodges D.M., Delong J.M., Forney C.F., Prange R.K. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207 (4): 604–611. DOI: https://doi.org/10.1007/s004250050524
  • Hong J.K., Yun B.W., Kang J.G., Raja M.U., Kwon E., Sorhagen K., Chu C., Wang Y., Loake G.J. 2008. Nitric oxide function and signaling in plant disease resistance. Journal of Experimental Botany 59 (2): 147–154. DOI: https://doi.org/10.1093/jxb/erm244
  • Huang M., Whang P., Chodaparambil J.V., Pollyea D.A., Kusler B., Xu L., Felsher D.W., Mitchell B.S. 2011. Reactive oxygen species regulate nucleostemin oligomerization and protein degradation. The Journal of Biological Chemistry 286 (13): 11035–11046. DOI: https://doi.org/10.1074/jbc.m110.208470
  • Imlay J.A. 2003. Pathways of oxidative damage. Annual Review of Microbiology 57 (1): 395–418. DOI: https://doi.org/10.1146/annurev.micro.57.030502.090938
  • Jones J.D.G., Dangl J.L. 2006. The plant immune system. Nature 444 (16): 323–329. DOI: DOI: 10.1038/nature05286
  • Khaledi N., Taheri P., Falahati-Rastegar M. 2016. Reactive oxygen species and antioxidant system responses in wheat cultivars during interaction with Fusarium species. Australasian Plant Pathology 45 (6): 653–670. DOI: https://doi.org/10.1007/s13313-016-0455-y
  • Khaledi N., Taheri P., Falahati-Rastegar M. 2017. Identification, virulence factors characterization and analysis virulence together with aggressiveness of Fusarium spp., causing wheat head blight in Iran. European Journal of Plant Pathology 147 (4): 897–918. DOI: https://doi.org/10.1007/s10658-016-1059-7
  • Khaledi N., Taheri P., Tarighi S. 2015. Antifungal activity of various essential oils against Rhizoctonia solani and Macrophomina phaseolina as major bean pathogens. Journal of Applied Microbiology 118 (3): 704–717. DOI: https://doi.org/10.1111/jam.12730
  • Koch A., Kumara N., Weberb L., Kellerc H., Imania J., Kogela K.H. 2013. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species. Proceedings of the National Academy of Sciences of the United States of America 110 (48): 19324–19329. DOI: https://doi.org/10.1073/pnas.1306373110
  • Lenc L., Czecholiński G., Wyczling D., Turów T., Kaźmierczak A. 2015. Fusarium head blight (FHB) and Fusarium spp. on grain of spring wheat cultivars grown in Poland. Journal of Plant Protection Research 55 (3): 266–277. DOI: https://doi.org/10.1515/jppr-2015-0038
  • Liu S., Hall M., Griffey C., McKendry A. 2009. Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Science 49 (6): 1955–1968. DOI: https://doi.org/10.2135/cropsci2009.03.0115
  • Mesterházy Á. 2014. Chemical control of Fusarium head blight of wheat. p. 232–247. In: “Mycotoxin Reduction in Grain Chains” (J.F. Leslie, A.F. Logrieco, eds). Wiley Blackwell Ames Iowa USA. DOI: 10.1002/9781118832790.ch16
  • Mesterházy Á., Bartók T., Kászonyi G., Varga M., Tóth B., Varga J. 2005. Common resistance to different Fusarium spp. causing Fusarium head blight in wheat. European Journal of Plant Pathology 112 (3): 267–281. DOI: https://doi.org/10.1007/s10658-005-2853-9
  • Mesterházy Á., Bartók T., Mirocha C.G., Komoróczy R. 1999. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breeding 118 (2): 97–110. DOI: https://doi.org/10.1046/j.1439-0523.1999.118002097.x
  • Montibus M., Khosravi C., Zehraoui E., Verdal-Bonnin M.N., Richard-Forget F., Barreau C. 2015. Is the Fgap1 mediated response to oxidative stress chemotype dependent in Fusarium graminearum? FEMS Microbiology Letters 363 (2):fnv232. DOI: https://doi.org/10.1093/femsle/fnv232
  • Moore J., Liu J.G., Zhou K., Yu L.L. 2006. Effects of genotype and environment on the antioxidant properties of hard winter wheat bran. Journal of Agricultural and Food Chemistry 54 (15): 5313–5322. DOI: https://doi.org/10.1021/jf060381l
  • Motallebi P., Niknam V., Ebrahimzadeh H., Tahmasebi Enferadi S., Hashemi M. 2015. The effect of methyl jasmonate on enzyme activities in wheat genotypes infected by the crown and root rot pathogen Fusarium culmorum. Acta Physiologiae Plantarum 37 (11): 237. DOI: https://doi.org/10.1007/s11738-015-1988-3
  • Mpofu A., Sapirstein H.D., Beta T. 2006. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. Journal of Agricultural and Food Chemistry 54 (4): 1265–1270.DOI: https://doi.org/10.1021/jf052683d
  • Mur L.A., Mandon J., Persijn S., Cristescu S.M., Moshkov I.E., Novikova G.V., Hall M.A., Harren F.J., Hebelstrup K.H., Gupta K.J. 2013. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5 (0): pls052. DOI:https://doi.org/10.1093/aobpla/pls052
  • Murphy M.E., Noack E. 1994. Nitric oxide assay using hemoglobin method. Methods in Enzymology 233: 240–250. DOI: https://doi.org/10.1016/s0076-6879(94)33027-1
  • Nicaise V., Roux M., Zipfel C. 2009. Recent advances in PAMPtriggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiology 150 (4): 1638–1647. DOI: https://doi.org/10.1104/pp.109.139709
  • Nielsen L.K., Jensen J.D., Nielsen G.C., Jensen J.E., Spliid N.H., Thomsen I.K., Justesen A.F., Collinge D.B., Jørgensen L.N. 2011. Fusarium head blight of cereals in Denmark: species complex and related mycotoxins. Phytopathology Journal 101 (8): 960–969. DOI: https://doi.org/10.1094/phyto-07-10-0188
  • Noorbakhsh Z., Taheri P. 2016. Nitric oxide: a signaling molecule which activates cell wall-associated defense of tomato against Rhizoctonia solani. European Journal of Plant Pathology 144 (3): 551–568. DOI: https://doi.org/10.1007/s10658-015-0794-5
  • Paris R., Lamattina L., Casalongue C.A. 2007. Nitric oxide promotes the wound-healing response of potato leaflets. Plant Physiology and Biochemistry 45 (1): 80–86. DOI: https://doi.org/10.1016/j.plaphy.2006.12.001
  • Ponts N., Couedelo L., Pinson-Gadais L., Verdal-Bonnin M.N., Barreau C., Richard-Forget F. 2009. Fusarium response to oxidative stress by H2O2 is trichothecene chemotypedependent. FEMS Microbiology Letters 258 (2): 102–107.DOI: https://doi.org/10.1111/j.1574-6968.2009.01521.x
  • Qiao M., Sun J., Liu N., Sun T., Liu G., Han S., Hou C., Wang D. 2015. Changes of nitric oxide and its relationship with H2O2 and Ca2+ in defense interactions between wheat and Puccinia triticina. PLoS ONE 10 (7): e0132265. DOI: https://doi.org/10.1371/journal.pone.0132265
  • Ribichich K.F., Lopez S.E., Vegetti A.C. 2000. Histopathological spikelet changes produced by Fusarium graminearum in susceptible and resistant wheat cultivars. Plant Disease Journal 84 (7): 794–802. DOI: https://doi.org/10.1094/pdis.2000.84.7.794
  • Ruan Y., Comeau A., Langevin F., Hucl P., Clarke J.M., Brule-Babel A., Pozniak C.J. 2012. Identification of novel QTL for resistance to Fusarium head blight in a tetraploid wheat population. Genome 55 (12): 853–864. DOI: https://doi.org/10.1139/gen-2012-0110
  • Schneider C., Boeglin W.E., Yin H., Porter N.A., Brash A.R. 2008. Intermolecular peroxyl radical reactions during autoxidation of hydroxy and hydroperoxy arachidonic acids generate a novel series of epoxidized products. Chemical Research in Toxicology 21 (4): 895–903. DOI: https://doi.org/10.1021/tx700357u
  • Shetty N.P., Jørgensen H.J.L., Jensen J.D., Collinge D.B., Shetty H.S. 2008. Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology 121: 267–280. DOI: 10.1007/s10658-008-9302-5
  • Shin S., Kim K.H., Kang C.S., Cho K.M., Park C.S., Okagaki R., Park J.C. 2014. A simple method for the assessment of fusarium head blight resistance in Korean wheat seedlings inoculated with Fusarium graminearum. The Plant Pathology Journal 30 (1): 25–32. DOI: https://doi.org/10.5423/ppj.oa.06.2013.0059
  • Singh S., Gupta A.K., Kaur N. 2012. Differential responses of antioxidative defence system to long-term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance. Journal of Agronomy and Crop Science 198 (3): 185–195. DOI: https://doi.org/10.1111/j.1439-037-x.2011.00497.x
  • Sorahinobar M., Niknam V., Ebrahimzadeh H., Soltanloo H., Behmanesh M., Tahmasebi Enferadi S. 2015. Central role of salicylic acid in resistance of wheat against Fusarium graminearum. Journal of Plant Growth Regulation 35 (2): 477–491. DOI: https://doi.org/10.1007/s00344-015-9554-1
  • Sorahinobar M., Niknam V., Ebrahimzadeh H., Soltanloo H., Moradi B., Bahram M. 2016. Lack of association between Fusarium graminearum resistance in spike and crude extract tolerance in seedling of wheat. European Journal of Plant Pathology 144 (3): 525–538. DOI: https://doi.org/10.1007/s10658-015-0792-7
  • Taheri P., Irannejad A., Goldani M., Tarighi S. 2014. Oxidative burst and enzymatic antioxidant systems in rice plants during interaction with Alternaria alternate. European Journal of Plant Pathology 140 (4): 829–839. DOI: https://doi.org/10.1007/s10658-014-0512-8
  • Tatar O., Gevrek M.N. 2008. Influence of water stress on proline accumulation, lipid peroxidation and water content of wheat. Asian Journal of Plant Sciences 7 (4): 409–412. DOI:https://doi.org/10.3923/ajps.2008.409.412
  • Tian Y., Tan Y., Liu N., Liao Y., Sun C., Wang S., Wu A. 2016. Functional agents to biologically control deoxynivalenol contamination in cereal grains. Frontiers in Microbiology 7: 395. DOI: https://doi.org/10.3389/fmicb.2016.00395
  • Tortora M.L., Díaz-Ricci J.C., Pedraza R.O. 2012. Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense. Plant and Soil 356 (1–2): 279–290. DOI: https://doi.org/10.1007/s11104-011-0916-6
  • Underwood W. 2012. The plant cell wall: a dynamic barrier against pathogen invasion. Frontiers in Plant Science 3: 85. DOI: https://doi.org/10.3389/fpls.2012.00085
  • Voigt C. 2014. Callose-mediated resistance to pathogenic intruders in plant defense related papillae. Frontiers in Plant Science 5: 168. DOI: https://doi.org/10.3389/fpls.2014.00168
  • Wang X., Cai J., Liu F., Dai T., Cao W., Wollenweber B., Jiang D. 2014. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiology and Biochemistry 74: 185–192. DOI: https://doi.org/10.1016/j.plaphy.2013.11.014
  • Yang F., Svensson B., Finnie C. 2011. Response of germinating barley seeds to Fusarium graminearum: The first molecular insight into Fusarium seedling blight. Plant Physiology and Biochemistry 49 (11): 1362–1368. DOI: https://doi.org/10.1016/j.plaphy.2011.07.004
  • Yi S.Y., Shirasu K., Moon J.S., Lee S.G., Kwon S.Y. 2014. The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS ONE 9 (2): e88951. DOI: https://doi.org/10.1371/journal.pone.0088951
  • Yoshida M., Kawada N., Nakajima T. 2007. Effect of infection timing on Fusarium head blight and mycotoxin accumulation in open and closed-flowering barley. Phytopathology 97 (9): 1054–1062. DOI: https://doi.org/10.1094/phyto-97-9-1054
  • Zaninotto F., La Camera S., Polverari A., Delledonne M. 2006. Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiology 141 (2): 379–383. DOI: https://doi.org/10.1104/pp.106.078857
  • Zhang X., Fu J., Hiromasa Y., Pan H., Bai G. 2013b. Differentially expressed proteins associated with fusarium head blight resistance in wheat. PLoS ONE 8 (12): e82079. DOI: https://doi.org/10.1371/journal.pone.0082079
  • Zhang S., Yang X., Sun M., Sun F., Deng S., Dong H. 2009. Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. Journal of Integrative Plant Biology 51 (2): 167–174. DOI: https://doi.org/10.1111/j.1744-7909.2008.00763.x
  • Zhang P., Zhou M.P., Zhang X., Huo Y., Ma H.X. 2013a. Change of defensive-related enzyme in wheat crown rot seedlings infected by Fusarium graminearum. Cereal Research Communications 41 (3): 431–439. DOI: https://doi.org/10.1556/crc.2013.0014
  • Zhou K., Hao J., Griffey C., Chung H., O’Keefe S.F., Chen J., Hogan S. 2007. Antioxidant properties of fusarium head blightresistant and -susceptible soft red winter wheat grains grown in Virginia. Journal of Agricultural and Food Chemistry 55 (9): 3729–3736. DOI: https://doi.org/10.1021/jf070147a
  • Zhou W.C., Kolb F.L., Riechers D.E. 2005. Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome 48 (5): 770–780. DOI: https://doi.org/10.1139/g05-041
  • Zhu Z., Xu F., Zhang Y., Chengc Y.T., Wiermer M., Li X., Zhang Y. 2010. Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proceedings of the National Academy of Sciences of the United States of America 107 (31): 13960–13965. DOI: https://doi.org/10.1073/pnas.1002828107

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-245ebdb8-caff-4c50-a43e-d386200e8334
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.