Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 2 |
Tytuł artykułu

Biological reduction of hydrogel-encapsulated Fe(III) by Shewanella oneidensis MR-1: incubation experiment and kinetic modeling

Warianty tytułu
Języki publikacji
Dissimilatory Fe(III) reduction has a profound infl uence on the global cycling of elements and the decontamination of pollutants, depending on the interaction of various environmental conditions. Hydrogelencapsulated goethite/soil was prepared in this study, and anaerobic incubation was conducted to investigate the biological Fe reduction of different encapsulated aggregates by Shewanella oneidensis MR-1. Results indicated that the release of Fe(II) ion was signifi cant and insignifi cant in R-soil treatments with and without anthraquinone-2,6-disulfonate (AQDS), respectively. The increase in the cross-linker ratio in the hydrogel decreased iron reduction. The Fe(II) concentration followed the order of unencapsulated treatment < 0.3% encapsulated hydrogel treatment < 2% encapsulated hydrogel treatment with AQDS addition. The results of the goethite experiment suggested that the goethite level and the addition of AQDS changed the effect of mineral structure property on iron reduction. This result was consistent with the simulation of a reductive dissolution kinetic model, in which the initial iron reduction rate k and long-term Fe(II) ion release extent parameter log γ were controlled by the interaction of the mineral structure property, iron mineral content, and electron shuttle compound distribution. Thus, site-specific environmental conditions should be fully considered in monitoring the performance and environmental effects of biological iron reduction.
Słowa kluczowe
Opis fizyczny
  • Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen, 361021, China
  • Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen, 361021, China
  • 1. ZACHARA J.M., KUKKADAPU R.K., PERETYAZHKO T., BOWDEN M., WANG C.M., KENNEDY D.W., MOORE, D., AREY B. The mineralogic transformation of ferrihydrite induced by heterogeneous reaction with bioreduced anthraquinone disulfonate (AQDS) and the role of phosphate. Geochim. Cosmochim. Ac. 75 (21), 6330, 2011.
  • 2. LIU Y., LI F.B., XIA W., XU J.M., YU X.S. Association between ferrous iron accumulation and pentachlorophenol degradation at the paddy soil-water interface in the presence of exogenous low-molecular-weight dissolved organic carbon. Chemosphere 91 (11), 1547, 2013.
  • 3. FREDRICKSN J.K., ZACHARA J.M., KENNEDY D.W., KUKKADAPU R.K., MCKINLEY J.P., HEALD S.M., LIU C., PLYMALE A.E., SMITH S.C. Reduction of TcO4 by sediment-associated biogenic Fe(II). Geochim. Cosmochim. Ac. 68, 3171, 2004.
  • 4. KOMLOS J., KUKKADAPU R.K., ZACHARA J.M., JAFFE P.R. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction. Water Res. 41, 2996, 2007.
  • 5. ZACHARA J.M., KUKKADAPU R.K., FREDICKSON J.K., GORBY Y.A., SMITH S.C. Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol. J. 19, 179, 2002.
  • 6. SCHLEINITZ K.M., SCHMELING S., JEHMLICH N., VON BERGEN M., HARMS H., KLEINSTEUBER S., VOGT C.,FUCHS G. Phenol degradation in the strictly anaerobic iron-reducing bacterium Geobacter metallireducens GS-15. Appl. Environ. Microbiol. 75 (12), 3912, 2009.
  • 7. COOPER D.C., PICARDAL F.F., COBY A.J. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments. Environ. Sci. Technol. 40, 1884, 2006.
  • 8. HU C.H., ZHANG Y.C., ZHANG L., LUO W.S. Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils. J. Microbiol. Biotechnol. 24 (4), 534, 2014.
  • 9. ZHANG T., GANNON S.M., NEVIN K.P., FRANKS A.E., LOVLEY D.R. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ. Microbiol. 12 (4), 1011, 2010.
  • 10. CUTTING R.S., CORKER V.S., FELLOWES J.W., LLOYD J.R., VAUGHAN D.J. Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochim. Cosmochim. Ac. 73, 4004, 2009.
  • 11. ZHANG Y.C., HU C.H., LUO W.S. Influences of electron donor, bicarbonate and sulfate on bioreduction processes and manganese/copper redistributions among minerals in a water-saturated sediment. Soil Sediment Contam. 23 (1), 94, 2014.
  • 12. BOSE S., HOCHELLA JR M.F., GORBY Y.A., KENNEDY D.W., MCCREADY D.E., MADDEN A.S., LOWER B.H. Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim. Cosmochim. Ac. 73, 962, 2009.
  • 13. YAN B., WRENN B.A., BASAK S., BISWAS P., GIAMMAR D.E. Microbial reduction of Fe(III) in hematite nanoparticles by Geobacter sulfurreducens. Environ. Sci. Technol. 42, 6526, 2008.
  • 14. GERLACH R., FIELD E.K., VIAMAJALA S., PEYTON B.M., APEL W.A., CUNNINGHAM A.B. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. Strain ES6. Biodegradation 22, 983995, 2011.
  • 15. AMSTAETTER K., BORCH T., KAPPLER, A. Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochim. Cosmochim. Ac. 85, 326, 2012.
  • 16. PIEPENBROCK A., DIPPON U., PORSCH K., APPEL E., KAPPLER A. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations. Geochim. Cosmochim. Ac. 75, 6844, 2011.
  • 17. LOVLEY D.R., PHILLIPS E.J.P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Envrion. Microbiol. 51 (4), 683, 1986.
  • 18. SPALDING BP, BROOKS SC, WATSON DB. Hydrogel-encapsulated soil: a tool to measure contaminant attenuation in situ. Envrion. Sci. Technol. 44, 3047, 2010.
  • 19. LARSON O., POSTMA D. Kinetics of reductive bulk diss olution of lepidocrocite, ferrihydrite, and goethite. Geochim. Cosmochim. Ac. 65 (9), 1367, 2001.
  • 20. RODEN E.E. Geochemical and microbiological controls on dissimilatory iron reduction. C R Geosci. 338, 456, 2006.
  • 21. DAVRANCHE M., DIA A., FAKIH M., NOWACK B., GRUAU G., ONA-NGUEMA G., PETITJEAN P., MARTIN S., HOCHREUTENER R. Organic matter control on the reactivity of Fe(III)-oxyhydroxides and associated As in wetland soils: a kinetic modeling study. Chem. Geol. 335, 24, 2013.
  • 22. RODEN E.E., ZACHARA J.M. Microbial reduction of crystalline iron (III) oxides: Influence of oxide surface area and potential for cell growth. Environ. Sci. Technol. 30 (5), 1618, 1996.
  • 23. DONG H.L., FREDRICKSON J.K., KENNEDY D.W., ZZCHARA J.M., KUKKADAPU R.K., ONSTOTT T.C. Mineral transformation associated with the microbial reduction of magnetite. Chem. Geol. 169, 299, 2000.
  • 24. LI X.M., LIU L., LIU T.X., YUAN T., ZHANG W., LI F.B., ZHOU S.G., LI Y.T. Electron transfer capacity dependence of quinone-mediated Fe (III) reduction and current generation by Klebsiella pneumoniae L17. Chemosphere 92 (2), 218, 2013.
  • 25. KUKKADAPU R.K., ZACHARA J.M., FREDRICKSON J.K., MCKINLEY J.P., KENNEDY D.W., SMITH S.C., DONG H.L. Reductive biotransformation of Fe in shale-limestone saprolite containing Fe (III) oxides and Fe (II)/ Fe (III) phyllosilicates. Geochim. Cosmochim. Ac. 70 (14), 3662, 2006.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.