PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 1 |

Tytuł artykułu

The influence of hydrolyzed and non-hydrolyzed linden inflorescence (Tilia cordata) extract on metabolic and transcriptomic profile in rat liver

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The extract from linden inflorescence is one of the pharmacognostic resources which properties are associated with the presence of flavonoids (mainly: quercetin, kaempferol, acacetin glycosides and tiliroside). Flavonoids belong to polyphenols that may play a significant role in the dietoprophylaxis of civilization diseases. These compounds have many different mechanisms of action, but most important seem to be their antioxidant properties. The aim of the present study was to investigate the influence of linden extract on a) gene expression in rat liver and determine the difference in gene expression depending on the use of hydrolyzed or non-hydrolyzed linden extract, and b) antioxidant parameters of liver tissue. Rats were fed the diet containing hydrolyzed and non-hydrolyzed extract from linden inflorescence (Tilia cordata). The administration of hydrolyzed extract increased more than two-fold the level of quercetin in rats liver when compared to non-hydrolyzed extract. The transcriptomic study performed using microarray technology revealed 344 probes regulated by linden extract and 187 probes differentiating the action of hydrolyzed from nonhydrolyzed linden extracts. The most important molecular functions of regulated genes were as follows: defense and immunity, transporter, receptor, ion channel, oxidoreductase, cytoskeletal protein and cell adhesion molecule. Among most important biological processes identified were immunity and defense, transport, homeostasis and lipid, fatty acid and steroid metabolism. The analysis of oxidative status in rats liver together with the analysis of liver transcriptomic profile suggest that the antioxidant activity of hydrolyzed linden extract is higher that the non-hydrolyzed and occurs on the level of gene expression.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

1

Opis fizyczny

p.63-69,fig.,ref.

Twórcy

autor
  • Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGW, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • Aherne S.A., O’Brien N.M., 2002. Dietary flavonols: chemistry, food content, and metabolism. Nutrition. 18, 75–81
  • Chen C., Kong A.N., 2004. Dietary chemopreventive compounds and ARE/EpRE signaling. Free Radical Biol. Med. 36, 1505–1516
  • Choi I.S., Choi E.Y., Jin J.Y., Park H.R., Choi J.I., Kim S.J., 2012. Kaempferol inhibits Prevotella intermedia lipopolysaccharideinduced production of nitric oxide through translational regulation in murine macrophages: Critical role of heme oxygenase-1-mediated reactive oxygen species reduction. J. Periodontol. [Epub ahead of print]
  • Crespy V., Morand C., Besson C., Manach C., Demigne C., Remesy C., 2002. Quercetin, but not its glycosides, is absorbed from the rat stomach. J. Agr. Food Chem. 50, 618–621
  • Dihal A.A., de Boer V.C., van der Woude H., Tilburgs C., Bruijntjes J.P., Alink G.M., Rietjens I.M., Woutersen R.A., Stierum R.H., 2006. Quercetin, but not its glycosidated conjugate rutin, inhibits azoxymethane-induced colorectal carcinogenesis in F344 rats. J. Nutr. 136, 2862–2867
  • Egert S., Wolffram S., Bosy-Westphal A., Boesch-Saadatmandi C., Wagner A.E., Frank J., Rimbach G., Mueller M.J., 2008. Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. J. Nutr. 138: 1615–1621
  • Granado-Serrano A.B., Martín M.A., Bravo L., Goya L., Ramos S., 2012. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chem.-Biol. Inter. 195, 154–164
  • Hodek P., Trefil P., Stiborová M., 2002. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem.-Biol. Inter. 139, 1–21
  • Hong J.T., Yen J.H., Wang L., Lo Y.H., Chen Z.T., Wu M.J., 2009. Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells. Toxicol. Appl. Pharmacol. 237, 59–68
  • Kohlmunzer S., 1993. Pharmacognosy: Textbook for students of pharmacy (in Polish). Wydawnictwo Lekarskie PZWL, Warszawa)
  • Liu S., Hou W., Yao .P, Li N., Zhang B., Hao L., Nüssler A.K., Liu L., 2012. Heme oxygenase-1 mediates the protective role of quercetin against ethanol-induced rat hepatocytes oxidative damage. Toxicol. Vitro 26, 74–80
  • Manach C., Morand C., Demigné C., Texier O., Régérat F., Rémésy C., 1997. Bioavailability of rutin and quercetin in rats. FEBS Lett. 409, 12–16
  • Matsukawa N., Matsumoto M., Hara H., 2009. High biliary excretion levels of quercetin metabolites after administration of a quercetin glycoside in conscious bile duct cannulated rats. Biosci, Biotechnol, Biochem, 73, 1863–1875
  • McAnlis G.T., McEneny J., Pearce J., Young I.S., 1999. Absorption and antioxidant effects of quercetin from onions in man. Eur. J. Clin. Nutr. 53, 92–96
  • Nakahira K., Takahashi T., Shimizu H., Maeshima K., Uehara K., Fujii H., Nakatsuka H., Yokoyama M., Akagi R., Morita K., 2003. Protective role of heme oxygenase-1 induction in carbon tetrachloride-induced hepatotoxicity. Biochem. Pharmacol. 66, 1091–1105
  • Sadowska A., 2003. Medicinal plants in veterinary and zootechnics (in Polish). Wydawnictwo SGGW, Warszawa
  • Smyth G.K., 2004. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 1
  • Tanigawa S., Fujii M., Hou D.X., 2007. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radical Biol. Med. 42, 1690–1703
  • Weng C.J., Chen M.J., Yeh C.T., Yen G.C., 2011. Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activating MAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity. New Biotechnol. 28, 767–777
  • Zhao L., Wu J., Yang J., Wei J., Gao W., Guo C., 2011, Dietary quercetin supplementation increases serum antioxidant capacity and alters hepatic gene expression profile in rats. Exp. Biol. Med. 236, 701–706
  • Zerin T., Kim Y.S., Hong S.Y., Song H.Y., 2012. Quercetin reduces oxidative damage induced by paraquat via modulating expression of antioxidant genes in A549 cells. J. Appl.Toxicol. DOI: 10.1002/jat.2812

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-24306e14-115a-4383-b55b-2b4b61441492
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.