PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 5 |

Tytuł artykułu

Potential toxicity in crucian carp following exposure to metallic nanoparticles of copper, chromium, and their mixtures: A comparative study

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Although study of the toxicity of metallic nanoparticles in aquatic organisms is increasing, there is still little known about their combined toxicity, especially in a comparative and integrated approach. The objective of this study is to compare the toxicity of copper nanoparticles (CuNP), chromium nanoparticles (CrNP), and their mixtures to crucian carp (Carassius auratus) through a comprehensive approach. A high median lethal concentration of CuNP (390.75 mg/L) and CrNP (551.03 mg/L) was calculated from the acute toxicity, indicative of low toxicity to crucian carp. After exposure for 10 d at sublethal concentrations, several biomarker responses, including the activities of brain acetylcholinesterase (AChE), gill sodium/ potassium-activated ATP (Na⁺/K⁺ -ATP), liver superoxide dismutase (SOD), and catalase (CAT) were significantly inhibited by all nanoparticles in most cases, implying the neurotoxicity, osmoregulatory toxicity, and oxidative damage of metallic nanoparticles. Thereafter, the integrated biomarker response version 2 (IBRv2) integrating all biomarker responses was applied to compare the toxicity, and therefore the toxicity order was tentatively proposed as: the mixtures ≈ CuNP>CrNP, suggesting a synergistic effect in the mixtures. The findings will help to understand the ecological impacts of metallic nanoparticles in an aquatic environment in a more complete and accurate picture.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

5

Opis fizyczny

p.2085-2094,fig.

Twórcy

autor
  • Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of the Ministry of Education, College of the Environment, Hohai University, Nanjing 210098, China
autor
  • Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of the Ministry of Education, College of the Environment, Hohai University, Nanjing 210098, China
autor
  • Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of the Ministry of Education, College of the Environment, Hohai University, Nanjing 210098, China
autor
  • Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of the Ministry of Education, College of the Environment, Hohai University, Nanjing 210098, China
autor
  • Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of the Ministry of Education, College of the Environment, Hohai University, Nanjing 210098, China
autor
  • Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of the Ministry of Education, College of the Environment, Hohai University, Nanjing 210098, China

Bibliografia

  • 1. KLAINE S.J., ALVAREZ P.J., BATLEY G.E., FERNANDES T.F., HANDY R.D., LYON D.Y., LEAD J.R. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27 (9), 1825, 2008.
  • 2. SCOWN T.M., VAN AERLE R., TYLER C.R. Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Critical Reviews in Toxicology, 40 (7), 653, 2010.
  • 3. HU X., LI D., GAO Y., MU L., ZHOU Q. Knowledge gaps between nanotoxicological research and nanomaterial safety. Environment International, 94, 8, 2016.
  • 4. PAGET V., MOCHE H., KORTULEWSKI T., GRALL R., IRBAH L., NESSLANY F., CHEVILLARD, S. Human cell line-dependent WC-Co nanoparticle cytotoxicity and genotoxicity: a key role of ROS production. Toxicological Sciences, 143 (2), 385, 2015.
  • 5. WATSON C., GE J., COHEN J., PYRGIOTAKIS G., ENGELWARD B.R., DEMOKRITOU P. High throughput screening platform for engineered nanoparticle-mediated genotoxicity using comet chip technology. ACS Nano, 8, 2118, 2014.
  • 6. HUYNH K.A., MCCAFFERY J.M., CHEN K.L. Heteroaggregation reduces antimicrobial activity of silver nanoparticles: evidence for nanoparticle–cell proximity effects. Environmental Science & Technology Letters, 1 (9), 361, 2014.
  • 7. LI L., FERNÁNDEZ-CRUZ M.L., CONNOLLY M., CONDE E., FERNÁNDEZ M., SCHUSTER M., NAVAS J. M. The potentiation effect makes the difference: non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro. Science of the Total Environment, 505, 253, 2015.
  • 8. TONG T., WILKE C.M., WU J., BINH, C.T.T., KELLY J.J., GAILLARD J.F., GRAY K.A. Combined toxicity of nano-ZnO and nano-TiO₂: from single to multinanomaterial systems. Environmental Science & Technology, 49 (13), 8113, 2015.
  • 9. CHEN Z., MENG H., XING G., CHEN C., ZHAO Y., JIA G., CHAI, Z. Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters. 163 (2), 109, 2006.
  • 10. MADHAVI V., REDDY A.V.B., REDDY K.G., MADHAVI G., PRASAD T.N.K.V. An overview on research trends in remediation of chromium. Research Journal of Recent Science. 2, 71, 2013.
  • 11. WANG M.Q., XU Z.R. Effect of chromium nanoparticle on growth performance, carcass characteristics, pork quality and tissue chromium in finishing pigs. Asian Australasian Journal of Animal Sciences, 17 (8), 1118, 2004.
  • 12. SHAW B.J., AL-BAIRUTY G., HANDY R.D. Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquatic Toxicology, 116, 90, 2012.
  • 13. SONG L., VIJVER M.G., PEIJNENBURG W.J., GALLOWAY T.S., TYLER C.R. A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere, 139, 181, 2015.
  • 14. SONG L., VIJVER M.G., PEIJNENBURG W.J. Comparative toxicity of copper nanoparticles across three Lemnaceae species. Science of the Total Environment, 518, 217, 2015.
  • 15. XIAO Y., VIJVER M.G., CHEN G., PEIJNENBURG W.J. Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. Environmental Science & Technology, 49 (7), 4657, 2015.
  • 16. WANG T., LONG X., CHENG Y., LIU Z., YAN S. The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquatic Toxicology, 152, 96, 2014.
  • 17. LU G., YANG H., XIA J., ZONG Y., LIU J. Toxicity of Cu and Cr Nanoparticles to Daphnia magna. Water, Air, & Soil Pollution, 228 (1), 18, 2017.
  • 18. CAZENAVE J., BACCHETTA C., PARMA M.J., SCARABOTTI P.A., WUNDERLIN, D.A. Multiple biomarkers responses in Prochilodus lineatus allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina). Environmental Pollution, 157 (11), 3025, 2009.
  • 19. BELIAEFF B, BURGEOT T. Integrated biomarker response: a useful tool for ecological risk assessment. Environmental Toxicology and Chemical, 21, 1316, 2002.
  • 20. SANCHEZ W., BURGEOT T., PORCHER J. M. A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environmental Science and Pollution Research, 20 (5), 2721, 2013.
  • 21. DING J., LU G., LI Y. Interactive effects of selected pharmaceutical mixtures on bioaccumulation and biochemical status in crucian carp (Carassius auratus). Chemosphere, 148, 21, 2016.
  • 22. SHAW B. J., HANDY, R. D. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environment International, 37 (6), 1083, 2011.
  • 23. HJ/T 154-2004. The guidelines for the hazard evaluation of new chemical substances, Ministry of Environmental Protection, PRC. 2004,
  • 24. GRIFFITT R.J., WEIL R., HYNDMAN K.A., DENSLOW N.D., POWERS K., TAYLOR D., BARBER D.S. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environmental Science & Technology, 41 (23), 8178, 2007.
  • 25. YANG L.H., FANG Z.Q., ZHENG W.B. Safety assessment and acute toxicity of heavy metals to crucian Carassius auratus. Journal of South China Normal University. 2, 101, 2003.
  • 26. GRIFFITT R.J., LUO J., GAO J., BONZONGO J.C., BARBER D.S. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry, 27 (9), 1972, 2008.
  • 27. DE ASSIS C.R.D., LINHARES A.G., OLIVEIRA V.M., FRANÇA R.C.P., SANTOS J.F., MARCUSCHI M., CARVALHO JLB. Characterization of catalytic efficiency parameters of brain cholinesterases in tropical fish. Fish Physiology and Biochemistry, 40 (6), 1659, 2014.
  • 28. ZHANG T., YANG M., PAN H., LI S., REN B., REN Z., SONG J. Does time difference of the acetylcholinesterase (AChE) inhibition in different tissues exist? A case study of zebra fish (Danio rerio) exposed to cadmium chloride and deltamethrin. Chemosphere, 168, 908, 2017.
  • 29. XIA, J, ZHAO, H.Z., LU, G.H. Effects of selected metal oxide nanoparticles on multiple biomarkers in Carassius auratus. Biomedical and Environmental Sciences, 26 (9), 742, 2013.
  • 30. DE ARAÚJO M.C., ASSIS C.R.D., SILVA L.C., MACHADO D.C., SILVA K.C.C., LIMA A.V.A., DE OLIVEIRA M.B.M. Brain acetylcholinesterase of jaguar cichlid (Parachromis managuensis): From physicochemical and kinetic properties to its potential as biomarker of pesticides and metal ions. Aquatic Toxicology, 177, 182, 2016.
  • 31. FONTE E., FERREIRA P., GUILHERMINO, L. Temperature rise and microplastics interact with the toxicity of the antibiotic cefalexin to juveniles of the common goby (Pomatoschistus microps): Post-exposure predatory behaviour, acetylcholinesterase activity and lipid peroxidation. Aquatic Toxicology, 180, 173, 2016.
  • 32. CHAKRABORTI S., RAHAMAN, S.M. Na⁺/K⁺-ATPase: A Perspective. In Regulation of Membrane Na⁺-K⁺ ATPase. Springer International Publishing. 15, 3, 2016.
  • 33. MA Z., ZHENG P., GUO H., JIANG S., QIN J.G., ZHANG D., LIU X. Salinity regulates antioxidant enzyme and Na⁺/K⁺-ATPase activities of juvenile golden pompano Trachinotus ovatus (Linnaeus 1758). Aquaculture Research. 47, 1481, 2014.
  • 34. WANG T., LONG X., LIU Z., CHENG Y., YAN S. Effect of copper nanoparticles and copper sulphate on oxidation stress, cell apoptosis and immune responses in the intestines of juvenile Epinephelus coioides. Fish & Shellfish Immunology, 44 (2), 674, 2015.
  • 35. BAYSOY E., ATLI G., CANLI M. The effects of salinity and salinity+ metal (chromium and lead) exposure on ATPase activity in the gill and intestine of tilapia Oreochromis niloticus. Archives of environmental contamination and toxicology, 64 (2), 291, 2013.
  • 36. MANKE A., WANG L., ROJANASAKUL Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International. 942916, 2013.
  • 37. MANNA P., GHOSH M., GHOSH J., DAS J., SIL P.C. Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: Role of IκBα/NF-κB, MAPKs and mitochondrial signal. Nanotoxicology, 6 (1), 1, 2012.
  • 38. KNAAPEN A.M., BORM P.J., ALBRECHT C., SCHINS R.P. Inhaled particles and lung cancer. Part A: Mechanisms. International Journal of Cancer, 109 (6), 799, 2004.
  • 39. SANCHEZ-HERNANDEZ J.C., SANDOVAL M., PIERART A. Short-term response of soil enzyme activities in a chlorpyrifos-treated mesocosm: Use of enzyme-based indexes. Ecological Indicators, 73, 525, 2017.
  • 40. WANG Z., ZHAO J., SONG L., MASHAYEKHI H., CHEFETZ B., XING B. Adsorption and desorption of phenanthrene on carbon nanotubes in simulated gastrointestinal fluids. Environmental Science & Technology, 45 (14), 6018, 2011.
  • 41. FENG M., HE Q., MENG L., ZHANG X., SUN P., WANG Z. Evaluation of single and joint toxicity of perfluorooctane sulfonate, perfluorooctanoic acid, and copper to Carassius auratus using oxidative stress biomarkers. Aquatic Toxicology, 161, 108, 2015.
  • 42. MENG L., YANG S., FENG M., QU R., LI Y., LIU J., SUN C. Toxicity and bioaccumulation of copper in Limnodrilus hoffmeisteri under different pH values: Impacts of perfluorooctane sulfonate. Journal of Hazardous Materials, 305, 219, 2016.
  • 43. DEVIN S., BUFFET P. E., CHÂTEL A., PERREINETTAJANI H., VALSAMI-JONES E., MOUNEYRAC C. The Integrated Biomarker Response: a suitable tool to evaluate toxicity of metal-based nanoparticles. Nanotoxicology. 11 (1), 1, 2017.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-240d54f4-0e7e-4ecd-a2ec-8163cbeefa4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.