Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 72 | 2 |
Tytuł artykułu

Region-related modular nerve-dependent motor activity in anorectum - cholinergic and nitrergic contribution to rat model

Warianty tytułu
Języki publikacji
Disturbances of enteric nerve-mediated anorectal evacuation mechanisms have medical and social impact. The study aimed at further eliciting the contribution of cholinergic and nitrergic neurotransmission systems to modular nerve networks in different regions of Wistar rat anorectum. Electrical field stimulation (EFS, 0.8 ms, 40 V, 2, 5 or 10 Hz, 20 s), computerized mechanographic on-line setup and drugs were used to evaluate the motor responses of isolated rings from circular muscle of rectum (proximal, middle, and distal part), internal anal sphincter, and anal canal. Twitch-like frequency-dependent contractions, more pronounced in rectal preparations, characterized the modular motor responses of rectal circular muscle rings and anal canal. Depending on the frequency of stimulation, the motor activity of internal anal sphincter varied from deep long-lasting relaxation to initial short-lasting relaxation, followed by a contraction. Electrically-evoked responses of anorectal preparations were tetrodotoxin (0.1 ^M)-sensitive. In the presence of atropine (0.3 ^M) the contractions of rectal rings decreased, relaxation of internal anal sphincter increased and inhibition of the contractions of the anal canal occurred, followed by relaxation. During atropine treatment, NG-nitro-L-arginine (0.5 mM) increased the contractile responses and suppressed internal anal sphincter relaxations. L-arginine (0.5 mM) decreased the contractions and extended the relaxations of internal anal sphincter and anal canal. Our results suggest that cholinergic and nitrergic systems are not equally involved in modular nerve networks of various regions of anorectum. Cholinergic transmission is more expressed in distal rectum, underlying its contractile potency, while nitric oxide-dependent transmission(s) control the relaxation ability of the internal anal sphincter and anal canal.
Słowa kluczowe
Opis fizyczny
  • Department of Experimental and Clinical Pharmacology, Medical University, Pleven, Bulgaria
  • Department of Experimental and Clinical Pharmacology, Medical University, Pleven, Bulgaria
  • Institute Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Alberts P, Stjarne L (1982) Facilitation and muscarinic alphaa- drenergic inhibition of the secretion of 3H-acetylcholine and 3H-noradrenaline from guinea pig ileum myenteric nerve terminals. Acta physiol Scand 116: 83-92.
  • Allcoln RJ, Cunnane TC, Kirkpatrick K (1986) Actions of a,P-methylene ATP and 6-hydrooxydopamine on sympa¬thetic neurotransmission in the vas deferens of the guinea pig, rat and mouse: support for co-transmission. Br J Pharmacol 89: 647-659.
  • Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, Cook IJ (2002) The proximal colonic motor response to rectal mechanical and chemical stimulation. Am J Physiol Gastrointest Liver Physiol 282: 443-449.
  • Bartho L, Lefebvre RA (1995) Nitric oxide-mediated con¬traction in enteric smooth muscle. Arch Int Pharmacodyn Ther 329: 53-66.
  • Bassotti G, Battaglia E, Bellone G, Dughera L, Fisogni S, Zambelli C, Morelli A, Mioli P, Emanuelli G, Villanacci V (2005) Interstitial cells of Cajal, enteric nerves, and glial cells in colonic diverticular disease. J Clin Pathol 58: 973-977.
  • Bertaccini G, Coruzzi G (1987) Receptors in the gastrointes¬tinal tract. Pharmac Res Commun 19: 87-119.
  • Bharucha AE(2006) Pelvic floor: anatomy and function. Neurogastroenterol Motility 18: 258-260.
  • Brading AF, Ivancheva C, Radomirov R (2008) Functional coordination of motor activity in colonic and recto-anal smooth muscles in rat experimental model. Methods Find Exp Clin Pharmacol 30: 201-207.
  • Cobine CA, Fong M, Hamilton R, Keef KD (2007) Species dependent differences in the actions of sympathetic nerves and noradrenaline in the internal anal sphincter. Neurogastroenterol Motil 19: 937-945.
  • Costa M, Brookes SJ (1994) The enteric nervous system. Am J Gastroenterol 89: 129-137.
  • Costa M, Brookes SJH, Henning GW (2000) Anatomy and physiology of the enteric nervous system. Gut 47: 15-19.
  • Costa M, Furness JB (1976) The peristaltic reflex: an analy¬sis of the nerve pathways and their pharmacology. Naunyn Schmiedebergs Arch Pharmacol 16: 47-60.
  • Crema A (1970) On the polarity of the peristaltic reflex in the colon. In: Smooth Muscle (Bulbring E, Brading A, Jones A, Tomita T, Eds). Edward Arnold, London, UK, p. 542-548.
  • De Lorijn F, de Jonge WJ, Wedel T, Vanderwinden JM, Benninga MA, Boeckxstaens GE (2005) Interstitial cells of Cajal are involved in the afferent limb of the rectoanal inhibitory reflex. Gut 54: 1107-1113.
  • Grider JR, Makhlouf GM (1986) Colonic peristaltic reflex: identification of vasoactive intestinal peptide as mediator of descending relaxation. Am J Physiol Gastrointest Liver Physiol 25: G40-45.
  • Gulturk S, Kozan R, Bostanci MO, Sefil F, Bagirici F (2008) Inhibition of neuronal nitric oxide prevents iron-induced cerebellar Purkinje cell loss in the rat. Acta Neurobiol Exp 68: 26-31.
  • Gyires K, Zadori ZS, Shujaa N, Minorics R, Falkay G, Matyus P (2007) Analysis of the role of central and peripheral alpha2-adrenoceptor subtypes in gastric mucosal defense in the rat. Neurochem Int 51: 289-296.
  • Ivancheva C, Radomirov R (2002) Control of non-adrener- gic non-cholinergic reflex motor responses in circular muscle of guinea-pig small intestine by Met-enkephalin. Auton Autacoid Pharmacol 22: 199-207.
  • Kadlec O, Masek K, Seferna I (1984) The topography of post-tetanic potentiation. Experientia 40: 404-406.
  • Kadlec O, Somogyi GT, Seferna I, Masek K, Vizi ES (1986) Interactions between the duration of stimulation and noradrenaline on cholinergic transmission in the myen- teric plexus-smooth muscle preparation. Brain Res Bull 16: 171-178.
  • Kiss JP, Vizi ES (2001) Nitric oxide: a novel link between synaptic and nonsynaptic transmission. Trends Neurosci 24: 211-215.
  • Kojima Y, Nakagawa T, Katsui R, Fujii H, Nakajiama Y, Takaki MA (2006) 5-HT4 agonist, mosapride, enhances intrinsic rectorectal and rectoanal reflexes after removal of extrinsic nerves in guinea pig. Am J Physiol Gastrointest Liver Physiol 289: G351-360.
  • Law NM, Bharucha AE, Zinsmeister AR (2002) Rectal and colonic distension elicit viscerovisceral reflexes in humans. Am J Physiol Gastrointest Liver Physiol 283: 384-389.
  • Malcolm A, Camilleri M (2000) Coloanal motor coordina¬tion in association with high-amplitude colonic contrac¬tions after pharmacological stimulation. Am J Gastroenterol 95: 715-719.
  • Matsufuji H, Yokoyama J (2003) Neural control of the internal anal sphincter motility. J Smooth Muscle Res 39: 11-20.
  • Nagano M, Ishimizu Y, Saitoh S, Okada H, Fukuda H (2004) The defecation reflex in rats: fundamental properties and the reflex center. Auton Neurosci 111: 48-56.
  • Ono S, Mitsui R, Karaki S, Kuwahara A (2005) Muscarinic and 5-HT4 receptors participate in the regulation of the frequency of spontaneous contractions of the longitudinal muscle in rat distal colon. Biomed Res 26: 173-177.
  • Opazo A, Lecea B, Admella C, Fantova MJ, Jimenez M, Marti-Rague J, Clave P (2009) A comparative study of structure and function of the longitudinal muscle of the anal canal and the internal anal sphincter in pigs. Dis Colon Rectum 52: 1902-1911.
  • Opazo A, Lecea B, Gil V, Jimenez M, Clave P, Gallego D (2011) Specific and complementary roles for nitric oxide and ATP in the inhibitory motor pathways to rat internal anal sphincter. Neurogastroenterol Motil 23: e11-e25.
  • Paton WD, Vizi ES (1969) The inhibitory action of nora¬drenaline and adrenaline on acetylcholine output by guinea-pig ileum longitudinal muscle strip. Br J Pharmacol 35: 10-28.
  • Paton WD (1955) The response of the guinea pig ileum to electrical stimulation by coaxial electrodes. J Physiol (Lond) 127: 40-41P.
  • Radomirov R, Venkova K (1988) Pharmacological charac¬teristics of the postsynaptically mediated contractile responses of guinea pig ileum to long lasting electrical field stimulation. Neuropharmacology 27: 729-735.
  • Radomirov R, Brading AF, Ivancheva C (2006) Ascending and descending enteric reflexes - regional functional coordina¬tion and efficacy. Auton Autacoid Pharmacol 26: 67-69.
  • Radomirov R, Ivancheva C, Brading AF, Itzev D, Rakovska A, Negrev N (2009) Ascending and descending reflex motor activity of recto-anal region - Cholinergic and nitrergic implications in a rat model. Brain Res Bull 79: 147-155.
  • Radomirov R, Negrev N, Itzev D, Stavreva G (2010) Activation-dependent descending reflex evacuation of anal canal in a rat model. Arch Ital Biol 148: 377¬388.
  • Rand MJ, Li CG (1995) Nitric oxide as a neurotransmitter in peripheral nerves: nature of transmitter and mechanism of transmission. Annu Rev Physiol 57: 659-682.
  • Rattan S (2005) The internal anal sphincter: regulation of smooth muscle tone and relaxation. Neurogastroenterol Motility 17: 50-59.
  • Rattan S, Regan RF, Patel CA, De Godoy MA (2005) Nitric oxide not carbon monoxide mediates nonadrenergic non- cholinergic relaxation in the murine internal anal sphinc¬ter. Gastroenterology 129: 1954-1966.
  • Sangwan YP, Coller JA, Barrett RC, Murray JJ, Roberts PL, Schoetz DJJr (1995) Distal rectoanal excitatory reflex: a reliable index of pudendal neuropathy? Dis Colon Rectum 38: 916-920.
  • Sarna SK (1991) Physiology and pathophysiology of colon¬ic motor activity. Dig Dis Sci 36: 998-1018.
  • Shafik A, El-Sibai O, Ahmed I (2001) Role of the sigmoid colon in the defecation mechanism with evidence of sig- moido-anal inhibitory and ano-sigmoid excitatory reflex. Front Biosci 6: B25-29.
  • Shafik A, Shafik AA, Ahmed I (2003a) Role of positive anorectal feedback in rectal evacuation: the concept of a second defecation reflex: the anorectal reflex. J Spinal Cord Med 26: 380-383.
  • Shafik A, Shafik AA, El-Sibai O, Ali YA (2003b) Videodefecography: a study of the rectal motile pattern. Surg Radiol Anat 25: 139-1344.
  • Shafik A, Mostafa RM, Shafik I, Ei-Sibai O, Shafik AA (2006) Functional activity of the rectum: A conduit organ or a storage organ or both? Worl J Gastroenterol 12: 4549-4552.
  • Smith TK, McCarron SL (1998) Nitric oxide modulates cholinergic reflex pathways to the longitudinal and circu¬lar muscle in the isolated guinea-pig distal colon. J Physiol 512: 893-906.
  • Stebbing JF, Brading AF, Mortensen NJ (1996) Nitric oxide and the rectoanal inhibitory reflex: retrograde neuronal tracing reveals a descending nitrergic rectoanal pathway in a guinea-pig model. Br J Surg 83: 493-498.
  • Thomas B, Saravanan KS, Mohanakumar KP (2007) In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroin- dazole. Neurochem Int 52: 990-1001.
  • Tonini M, Costa M (1990) A pharmacological analysis of the neuronal circuitry involved in distension-evoked enteric excitatory reflex. Neuroscience 38: 787-795.
  • Van der Veek PP, Schots ED, Masclee AA (2004) Effect of neurotensin on colorectal motor and sensory function in humans. Dis Colon Rectum 47: 210-218.
  • Vizi ES (2000) Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol Rev 52: 63-89.
  • Wiklund CU, Olgart C, Wiklund NP, Gustafsson LE (1993) Modulation of cholinergic and substance P-like neu¬rotransmission by nitric oxide in the guinea-pig ileum. Br J Pharmacol 110: 833-839.
  • Yamanouchi M, Shimatani H, Kadowaki M, Yoneda S, Nakagawa T, Fuji H, Takai M (2002) Integrative control of rectoanal reflex in guinea pig through lumbar colonic nerves. Am J Physiol Gastrointest Liver Physiol 283: G148-G156.
  • Yang G, Zhong T, Cheng WY, Ding GS (2006) Change of substance P in portal vein during rectoanal inhibitory reflex. Zhonghua Wei Chang Wai Ke Za Zhi 9: 538-541.
  • Yildirim M, Marangoz AH, Ayyildiz M, Ankarali S, Marangoz C (2011) The interactions of nitric oxide and adenosine on penicillininduced epileptiform activity in rats. Acta Neurobiol Exp (Wars) 71: 208-219.
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.