PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 66 | 1 |

Tytuł artykułu

Effects of simultaneous use of methyl jasmonate with other plant hormones on the level of anthocyanins and biogenic amines in seedlings of common buckwheat (Fagopyrum esculentum Moench)

Treść / Zawartość

Warianty tytułu

PL
Wpływ jednoczesnego użycia jasmonianu metylu z innymi hormonami roślinnymi na poziom antocyjanów i amin biogennych w siewkach gryki zwyczajnej (Fagopyrum esculentum Moench)

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to assess the impact of auxin (IAA), gibberellin (GA3) and cytokinin (kinetin), used solely and in combination with methyl jasmonate (MJ), on the accumulation of anthocyanins and biogenic amines in hypocotyls and cotyledons of common buckwheat (Fagopyrum esculentum Moench) seedlings. The obtained results indicate that accumulation of anthocyanins in buckwheat seedlings was dependent on the concentration of the phytohormone applied and the tissue studied. The combined use of MJ and IAA, GA3 or kinetin partly reversed the effect of strong inhibition of anthocyanin synthesis by MJ. IAA used solely decreased the level of anthocyanins in de-etiolated buckwheat cotyledons. IAA also caused a reduction of putrescine content, both in hypocotyls and cotyledons of buckwheat seedlings. MJ used alone caused high accumulation of 2-phenylethylamine (PEA) in buckwheat cotyledons and hypocotyls. The simultaneous application of MJ and IAA, GA3 or kinetin also stimulated PEA synthesis in buckwheat tissues, however this effect was significantly lower compared to the use of MJ only. A reverse significant correlation between PEA and anthocyanin contents occurred in buckwheat hypocotyls, but not in cotyledons. It was suggested that the deficiency of L-phenylalanine, a substrate for synthesis of 2-phenylethylamine, may be partly responsible for the decline in anthocyanin content in buckwheat hypocotyls under the influence of MJ.
PL
Celem pracy była ocena wpływu auksyny (IAA), gibereliny (GA3) i cytokininy (kinetyna) stosowanych wyłącznie, oraz jednocześnie z parami jasmonianu metylu (MJ), na akumulację antocyjanów i amin biogennych w hipokotylach i liścieniach siewek gryki zwyczajnej (Fagopyrum esculentum Moench). Uzyskane wyniki wskazują, że nagromadzanie antocyjanów w siewkach gryki było zależne od stężenia zastosowanego fitohormonu i badanej tkanki. Łączne stosowanie MJ i IAA, GA3 lub kinetyny częściowo odwracało efekt silnego hamowania syntezy antocyjanów przez MJ. IAA zastosowany samodzielnie obniżał poziom antocyjanów w liścieniach oraz powodował zmniejszenie zawartości putrescyny w hipokotylach i liścieniach gryki. MJ stosowany samodzielnie powodował duże nagromadzanie 2-fenyloetyloaminy (PEA) w liścieniach i hipokotylach gryki. Jednoczesne stosowanie MJ i IAA, GA3 lub kinetyny stymulowało również wzmożoną syntezę PEA w tkankach gryki, jednak wpływ ten był znacznie niższy w porównaniu do użycia jedynie MJ. Wystąpiła odwrotna korelacja między zawartością PEA i antocyjanów w hipokotylach gryki, ale nie w liścieniach. Zasugerowano, że za spadek zawartości antocyjanów w hipokotylach gryki pod wpływem MJ może być częściowo odpowiedzialny niedobór L-fenyloalaniny będącej substratem do syntezy 2-fenyloetyloaminy (PEA).

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

66

Numer

1

Opis fizyczny

p.17-26,fig.,ref.

Twórcy

autor
  • Department of Plant Physiology and Genetics, Institute of Biology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
autor
  • Research Institute of Horticulture, Konstytucji 3 Maja1/3, 96-100 Skierniewice, Poland
autor
  • Research Institute of Horticulture, Konstytucji 3 Maja1/3, 96-100 Skierniewice, Poland
autor
  • Department of Plant Physiology and Genetics, Institute of Biology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
autor
  • Department of Plant Physiology and Genetics, Institute of Biology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland

Bibliografia

  • Ananieva K., Ananiev E.D. 2000. Interaction between methyl ester of jasmonic acid and benzyladenine during the growth of excised greening cotyledons of Cucurbita pepo L. (zucchini). Bulg. J. Plant Physiol. 26: 48–57.
  • Asthir B., Duffus C.M., Spoor W. 2004. Correlation of gibberellin-induced growth, polyamine levels and amine oxidases in epicotyl, root and leaf blade of barley seedlings. Plant Growth Regul. 42: 193–201. http://dx.doi.org/10.1023/B:GROW.0000026546.38671.1e
  • Awad M.A., de Jager A. 2002. Formation of flavonoids, especially anthocyanin and chlorogenic acid in ‘Jonagold’ apple skin: influences of growth regulators and fruit maturity. Scientia Hort. 93: 257–266. http://dx.doi.org/10.1016/S0304-4238(01)00333-8
  • Bagni N., Tassoni A. 2001. Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids, 20: 301–317. http://dx.doi.org/10.1007/s007260170046
  • Biondi S., Scoccianti V., Scaramagli S., Ziosi V., Torrigani P. 2003. Auxin and cytokinin modify methyl jasmonate effects on polyamine metabolism and ethylene biosynthesis in tobacco leaf discs. Plant Sci. 165: 95–101. http://dx.doi.org/10.1016/S0168-9452(03)00147-X
  • Buschmann C., Lichtenthaler H.K. 1982. The effect of cytokinins on growth and pigment accumulation of radish seedlings (Raphanus sativus L.) grown in the dark and in at different light quanta fluence rates. Photochem. Photobiol. 35: 217–221. http://dx.doi.org/10.1111/j.1751-1097.1982.tb03835.x
  • Chen C.T., Kao C.H. 1991. Senescence of rice leaves XXX. Levels of endogenous polyamines and dark-induced senescence of rice leaves. Plant Cell Physiol. 32: 935–941.
  • Cho S-C. 1983. Effects of cytokinin and several inorganic cations on the polyamine content of lettuce cotyledons. Plant Cell Physiol. 24: 27–32.
  • Dai Y-R., Kaur-Sawhney R., Galston A.W. 1982. Promotion by gibberellic acid of polyamine biosynthesis in internodes of light-grown dwarf peas. Plant Physiol. 69: 103–106. http://dx.doi.org/10.1104/pp.69.1.103
  • Flores H.E., Galston A.W. 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69: 701–706. http://dx.doi.org/10.1104/pp.69.3.701
  • Galston A.W., Sawhney R.K. 1990. Polyamines in plant physiology. Plant Physiol. 94: 406–410. http://dx.doi.org/10.1104/pp.94.2.406
  • Horbowicz M., Grzesiuk A., Dębski H., Koczkodaj D., Saniewski M. 2008. Methyl jasmonate inhibits anthocyanins synthesis in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol. Crac. Ser. Bot. 50: 71–78.
  • Horbowicz M., Kosson R., Wiczkowski W., Koczkodaj D., Mitrus J. 2011a. The effect of methyl jasmonate on accumulation of 2-phenylethylamine and putrescine in seedlings of common buckwheat (Fagopyrum esculentum). Acta Physiol. Plant. 33: 897–903. http://dx.doi.org/10.1007/s11738-010-0616-5
  • Horbowicz M., Chrzanowski G., Koczkodaj D., Mitrus J. 2011b. The effect of methyl jasmonate vapors on content of phenolic compounds in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Soc. Bot. Pol. 80: 5–9.
  • Jain V.K., Guruprasad K.N. 1989. Effect of chlorocholine chloride and gibberellic acid on the anthocyanin synthesis in radish seedlings. Physiol. Plant. 75: 233–236. http://dx.doi.org/10.1111/j.1399-3054.1989.tb06174.x
  • Janeš D., Kantar D., Kreft S., Prosen H. 2009. Identification of buckwheat (Fagopyrum esculentum Moench) aroma compounds with GC–MS. Food Chem. 112: 120–124. http://dx.doi.org/10.1016/j.foodchem.2008.05.048
  • Kang B.G., Burg S.P. 1973. Role of ethylene in phytochrome-induced anthocyanin synthesis. Planta 110: 227–235. http://dx.doi.org/10.1007/BF00387635
  • Kim J-S., Lee B-H., Kim S-H., Oh K-H., Cho K.Y. 2006. Responses to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn (Zea mays L.) leaf. J. Plant Biol. 49: 16–25. http://dx.doi.org/10.1007/BF03030784
  • Legocka J., Żarnowska A. 2000. Role of polyamines in the cytokinin-dependent physiological processes II. Modulation of polyamine levels during cytokinin-stimulated expansion of cucumber cotyledons. Acta Physiol. Plant. 22: 395–401. http://dx.doi.org/10.1007/s11738-000-0079-1
  • Liu Z-H., Wang W-C.,Yen Y-S. 1998. Effect of hormone treatment on root formation and endogenous indole-3 acetic acid and polyamine levels of Glycine max cultivated in vitro. Bot. Bull. Acad. Sin. 39: 113–118.
  • Loreti E., Povero G., Novi G., Solfanelli C., Alpi A., Perata P. 2008. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol. 179: 1004–1016. http://dx.doi.org/10.1111/j.1469-8137.2008.02511.x
  • Mancinelli A.L. 1984. Photoregulation of anthocyanin synthesis. VIII. Effects of light pretreatments. Plant Physiol. 75: 447–453. http://dx.doi.org/10.1104/pp.75.2.447
  • Park K.Y., Lee S.H. 1994. Effects of ethylene and auxin on polyamine levels in suspension-cultured tobacco cells. Physiol. Plant. 90: 382–390. http://dx.doi.org/10.1111/j.1399-3054.1994.tb00403.x
  • Percot A., Yalçın A., Aysel V., Erdugan H., Dural B., Güven K.C. 2009. β-Phenylethylamine content in marine algae around Turkish coasts. Bot. Marina, 52: 87–90. http://dx.doi.org/10.1515/BOT.2009.031
  • Rengel Z., Kordan H.A. 1987. Effects of growth regulators on light-dependent anthocyanin production in Zea mays seedlings. Physiol. Plant. 69: 511–516. http://dx.doi.org/10.1111/j.1399-3054.1987.tb09233.x
  • San-Francisco S., Houdusse F., Zamarreno A.M., Garnica M., Casanova E., Garcia-Mina J.M. 2005. Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content of pepper plants cultivated in hydroponic conditions. Scientia Hort. 106: 38–52. http://dx.doi.org/10.1016/j.scienta.2005.03.006
  • Saniewski M., Miszczak A., Kawa-Miszczak L., Wegrzynowicz-Lesiak E., Miyamoto K., Ueda J. 1998. Effects of methyl jasmonate on anthocyanin accumulation, ethylene production, and CO2 evolution in uncooled and cooled tulip bulbs. J. Plant Growth Regul. 17: 33–37. http://dx.doi.org/10.1007/PL00007009
  • Saniewski M., Horbowicz M., Puchalski J., Ueda J. 2003. Methyl jasmonate stimulates the formation and the accumulation of anthocyanins in Kalanchoe blossfeldiana. Acta Physiol. Plant. 25: 143–149. http://dx.doi.org/10.1007/s11738-003-0047-7
  • Saniewski M., Horbowicz M., Puchalski J. 2006. Induction of anthocyanins accumulation by methyl jasmonate in shoots of Crassula multicava Lam. Acta Agrobot. 59: 43–50.
  • Shabana M., Gonaid M., Salama M.M., Abdel-Sattar E. 2006. Phenylalkylamine alkaloids from Stapelia hirsuta L. Nat. Prod. Res. 20: 710–714.
  • Smith T.A. 1977. Phenethylamine and related compounds in plants. Phytochemistry, 16: 9–18. http://dx.doi.org/10.1016/0031-9422
  • Symons G.M., Reid J.B. 2003. Interactions between light and plant hormones during de-etiolation. J. Plant Growth Regul. 22: 3–14. http://dx.doi.org/10.1007/s00344-003-0017-8
  • Tabor C.W., Tabor H. 1984. Polyamines. Ann. Rev. Biochem. 53: 749–790.
  • Tieman D., Taylor M., Schauer N., Fernie A.D., Hanson A.D., Klee H.J. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc. Natl. Acad. Sci. USA 103: 8287–8292. http://dx.doi.org/10.1073/pnas.0602469103
  • Troyer J.R. 1964. Anthocyanin formation in excised segments of buckwheat-seedling hypocotyls. Plant Physiol. 39: 907–912. http://dx.doi.org/10.1104/pp.39.6.907
  • Ueda J., Kato J., Yamane H., Takahashi N. 1981. Inhibitory effect of methyl jasmonate and its related compounds on kinetin-induced retardation of oat leaf senescence. Physiol. Plant. 52: 305–309. http://dx.doi.org/10.1111/j.1399-3054.1981.tb08511.x
  • Vince D. 1968. Growth and anthocyanin synthesis in excised Sorghum internodes. Planta, 82: 261–279. http://dx.doi.org/10.1007/BF00398204
  • Walker M.A., Roberts D.R., Dumbroff E.B. 1988. Effects of cytokinin and light on polyamines during the greening response of cucumber cotyledons. Plant Cell Physiol. 29: 201–205.
  • Walters D.R. 2003. Polyamines in plant disease. Phytochemistry, 64: 97–107. http://dx.doi.org/10.1016/S0031-9422(03)00329-7
  • Walters D.R., Cowley T., Mitchell A. 2002. Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. J. Exp. Bot. 53: 747–756. http://dx.doi.org/10.1093/jexbot/53.369.747
  • Weidhase R.A., Lehmann J., Kramell H., Sembdner G., Parthier B. 1987 a. Degradation of ribulose-1,5-biphosphate carboxylase and chlorophyll in senescing barley leaf segments triggered by jasmonic acid methylester, and counteraction by cytokinin. Physiol. Plant. 66: 161–166. http://dx.doi.org/10.1111/j.1399-3054.1987.tb01961.x
  • Weidhase R.A., Kramell H., Lehmann J., Liebisch W., Lerbs W., Parthier B. 1987 b. Methyljasmonate-induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Sci. 51: 177–186. http://dx.doi.org/10.1016/0168-9452

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-23f22d82-4555-4d79-8431-eb51169143ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.