Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 84 | 3 |
Tytuł artykułu

Quantifiable differences between phytolith assemblages detected at species level: analysis of the leaves of nine Poa species (Poaceae)

Treść / Zawartość
Warianty tytułu
Języki publikacji
The taxonomie value of phytolith assemblages and their degree of variability within different species of the same genus is still an undervalued issue in the botanical range of phytolith studies. However the understanding of grass phytolith variance and its implications to plant systematics is doubtless. In the present study phytoliths of the lateral shoots (leaves) of nine, globally distributed Poa species (Pooideae - Poaceae) are described. Phytoliths were recovered from Poa specimens by the dry ashing technique. Altogether 6223 disarticulated phytoliths were counted (approximately 500-700 phytoliths per species) in 54 plant samples, which cover six shoots of nine species. Not only the relative frequency of each morphotype was calculated, but measurements were conducted to determine the biogenic silica content of Poa lateral shoots. A phytolith reference collection for the nine selected species of a worldwide importance was also compiled. The description of the most significant phytolith morphotypes and their taxonomic relationships are given here. Results suggest that the biogenic silica content of the Poa lateral shoots was determined to be relatively high within all nine species. Phytolith assemblage data was subjected to multivariate statistical analyses (e.g., CA and PCA) in order to find differences and similarities among the nine Poa species. Results show that the two closely related Poa of the P. pratensis species group, namely the P. pratensis and P. angustifolia, only slightly differ from the other Poa species if we consider their rondel-trapeziform short cells (SC) phytolith frequencies.
Słowa kluczowe
Opis fizyczny
  • Department of Agricultural Botany, Crop Physiology and Biotechnology, University of Debrecen, Boszormenyi u.138, 4032 Debrecen, Hungary
  • Department of Agricultural Botany, Crop Physiology and Biotechnology, University of Debrecen, Boszormenyi u.138, 4032 Debrecen, Hungary
  • Department of Economic Analytical Methodology and Statistics, University of Debrecen, Boszormenyi u.138, 4032 Debrecen, Hungary
  • Department of Solid State Physics, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
  • Department of Botany, Szent Istvan University, Pater Karoly u. 1, 2100 Godollo, Hungary
  • Institute of Nature Conservation and Landscape Management, Szent Istvan University, Pater K.u.1, 2100 Godollo, Hungary
  • 1.Blackman E, Parry DW. Opaline silica bodies in the range grasses of southern Alberta. Can J Bot. 1968;49(5):769-781. http://dx.doi. org/10.1139/b71-116
  • 2.Agarie S, Agata W, Uchida H, Kubota F, Kaufman P. Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis. J Exp Bot. 1996;47(5):655-660. http://dx.doi. org/10.1093/jxb/47.5.655
  • 3.Twiss PC, Suess E, Smith RM. Morphological classification of grass phytoliths. Soil Sci Soc Am J. 1969;33(1):109-115. http://dx.doi. org/10.2136/sssaj1969.03615995003300010030x
  • 4.Brown DA. Prospects and limits of a phytolith key for grasses in the Central United States. J Archaeol Sci. 1984;11(4):345-368. http://
  • 5.Mulholland SC. Phytolith shape frequencies in North Dakota grasses: a comparison to general patterns. J Archaeol Sci. 1989; 16(5):489-511.
  • 6.Mulholland SC, Rapp G. A morphological classification of grass silica bodies. In: Rapp G, Mulholland SC, editors. Phytolith system-atics. New York, NY: Plenum Press; 1992. p. 65-89. http://dx.doi. org/10.1007/978-1-4899-1155-1_4
  • 7.Fredlund GG, Tieszen LT. Modern phytolith assemblages from the North American Great Plains. J Biogeogr. 1994;21(3):312-335. http://
  • 8.Twiss PC. Predicted world distribution of C3 and C4 grass phytoliths. In: Rapp G, Mulholland SC, editors. Phytolith systematics. New York, NY: Plenum Press; 1992. p. 113-128. http://dx.doi. org/10.1007/978-1-4899-1155-1_6
  • 9.Lindstrom LI, Boo BM, Mujica MB, Lutz EE. Silica bodies in perennial grasses of the southern District of the Calden in central Argentina. Phyton. 2000;69:127-135.
  • 10.Mejia-Saules T, Bisby FA. Silica bodies and hooked papillae in lemmas of Melica species (Gramineae: Pooideae). Bot J Lin Soc. 2003;141(4):447-463.
  • 11.Krishnan S, Samson NP, Ravichandran P, Narasimhan D, Dayanandan P. Phytoliths of Indian grasses and their potential use in identification. Bot J Lin Soc. 2000;132(3):241–252.
  • 12. Lu H, Liu KB. Morphological variations of lobate phytoliths from grasses in China and the south-eastern United States. Divers Distrib.2003;9(1):73–87.
  • 13. Prychid CJ, Rudall PJ, Gregory M. Systematics and biology of silica bodies in monocotyledons. Bot Rev. 2004;69(4):377–440.[0377:SABOSB]2.0.CO;2
  • 14. Clayton WD, Renvoize SA, editors. Genera graminum: grasses of the world. London: Royal Botanic Gardens; 1986. (Kew BulletinAdditional Series; vol 13).
  • 15. Soó R. A Magyar flóra és vegetáció rendszertani – növényföldrajzi kézikönyve V. 2nd ed. Budapest: Akadémiai Kiadó; 1973.
  • 16. Blinnikov MS. Phytoliths in plants and soils of the interior Pacific Northwest, USA. Rev Palaeobot Palynol. 2005;135(1–2):71–98.
  • 17. de Melo SP, Monteiro FA, de Bona FD. Silicon distribution and accumulation in shoot tissue of the tropical forage grass Brachiaria brizantha.Plant Soil. 2010;336(1–2):241–249. s11104-010-0472-5
  • 18. Hartley W. Studies on the origin, evolution, and distribution of the Gramineae. IV. The genus Poa L. Aust J Bot. 1961;9(2):152–161.
  • 19. Blinnikov MS, Busacca A, Whitlock C. Reconstruction of the late Pleistocene grassland of the Columbia basin, Washington, USA,based on phytolith records in loess. Palaeogeogr PalaeoclimatolPalaeoecol. 2002;177(1–2):77–101.
  • 20. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, et al. Flora Europaea. Volume 5. Cambridge: CambridgeUniversity Press; 1980.
  • 21. Chaffey NJ. Epidermal structure in the ligules of four species of the genus Poa L. (Poaceae). Bot J Lin Soc. 1984;89(4):341–354.
  • 22. Chaffey NJ. Structure and function in the grass ligule: presence of veined and membranous ligules on the same culm of Britishgrasses. New Phytol. 1985;101(4):613–621.
  • 23. Szabó KZ, Papp M, Daróczi L. Ligule morphology and anatomy of five Poa species. Acta Biol Crac Ser Bot. 2006;48(2):83–88.
  • 24. Lisztes-Szabó Z, Kovács S, Pető Á. Phytolith analysis of Poa pratensis (Poaceae) leaves. Turk J Bot. 2014;38(1):851–863.
  • 25. Matzk F. New efforts to overcome apomixis in Poa pratensis. Euphytica. 1991;55(1):65–72.
  • 26. USDA, NRCS. The PLANTS Database [Internet]. Greensboro, NC: National Plant Data Team; 2014 [cited 2009 Aug 18]; Available from:
  • 27. Albert RM, Weiner S. Study of opal phytoliths in prehistoric ash layers using a quantitative approach. In: Meunier J, Coline F, editors.Phytoliths: applications in earth sciences and human history. Lisse:Balkema; 2001. p. 251–266.
  • 28. Mercader J, Astudillo F, Barkworth M, Bennett T, Esselmont C, Kinyanjui R, et al. Poaceae phytoliths from Niassa Rift, Mozambique. J Archaeol Sci. 2010;37(8):1953–1967.
  • 29. Mercader J, Bennett T, Esselmont C, Simpson S, Walde D. Phytoliths in woody plants from the Miombo woodlands of Mozambique. AnnBot. 2009;104(1):91–113.
  • 30. Madella M, Alexandre A, Ball T. International Code for Phytolith Nomenclature 1.0. Ann Bot. 2005;96(2):253–260.
  • 31. Blinnikov MS, Gaglioti BV, Walker DA, Wooller MJ, Zazula GD. Pleistocene graminoid-dominated ecosystems in the Arctic. Quat Sci Rev. 2011;30(21-22):2906-2929. quascirev.2011.07.002
  • 32.Honaine MF, 0sterrieth ML. Silification of the adaxial epidermis of leaves of panicoid grass in relation to leaf position and section and environmental conditions. Plant Biol. 2012;14(4):596-604. http://
  • 33.Yost CL, Blinnikov MS. Locally diagnostic phytoliths of wild rice (Zizania palustris L.) from Minnesota, USA: comparison to other wetland grasses and usefulness for archaeobotany and paleoecological reconstructions. J Archaeol Sci. 2011;38(8):1977-1991. http://dx.doi. org/10.1016/j.jas.2011.04.016
  • 34.Piperno DR, Pearsall DM. The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Washington, DC: Smithsonian Institution Scholarly Press; 1998. (Smithsonian Contributions to Botany; vol 85).
  • 35.Juggins S. C2 version 1.5 user guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle upon Tyne: Newcastle University; 2007.
  • 36.Jolliffe IT. Principal component analysis. New York, NY: SpringerVerlag; 2002.
  • 37.Carnelli AL, Theurillat JP, Madella M. Phytolith types and type-frequencies in subalpine-alpine plant species of the European Alps. Rev Palaeobot Palynol. 2004;129(1-2):39-65. revpalbo.2003.11.002
  • 38.Metcalfe CR. Anatomy of the monocotyledons I. Gramineae. Oxford: Clarendon Press; 1960.
  • 39.Ponzi R, Pizzolongo P. Morphology and distribution of epidermal phytoliths in Triticum aestivum L. Plant Biosyst. 2003;137(1):3-10.
  • 40.Morris LR, Baker FA, Morris C, Ryel RJ. Phytolith types and type-frequencies in native and introduced species of the sagebrush steppe and pinyon-juniper woodlands of the Great Basin, USA. Rev Palaeobot Palynol. 2009;157:339-357. revpalbo.2009.06.007
  • 41.Marx R, Lee DE, Lloyd KM, Lee WG. Phytolith morphology and biogenic silica concentrations and abundance in leaves of Chiono-chloa (Danthonieae) and Festuca (Poeae) in New Zealand. NZ J Bot. 2004;42(4):677-691.
  • 42.Mulholland SC, Rapp G, Ollendorf AL, Regal R. Variation in phytoliths within a population of corn (Mandan Yellow Flour). Can J Bot. 1990;68(8):1638-1645.
  • 43.Mulholland SC, Rapp G, Ollendorf AL. Variation in phytoliths from corn leaves. Can J Bot. 1988;66:2001-2008.
  • 44.Madella M, Lancelotti C, Osterrieth M. Comprehensive perspectives on phytolith studies in Quaternary research. Quat Int. 2012;287(1):1-2.
  • 45.Dani M, Farkas Á, Cseke K, Filep R, Kovács A. Leaf epidermal characteristics and genetic variability in Central European populations of broad-leaved Festuca L. taxa. Plant Syst Evol. 2014;300(3):431-451.
  • 46.Blinnikov MS, Bagent CM, Reyerson PE. Phytolith assemblages and opal concentrations from modern soils differentiate temperate grasslands of controlled composition on experimental plots at Cedar Creek, Minnesota. Quat Int. 2013;287:101-113. http://dx.doi. org/10.1016/j .quaint.2011.12.023
  • 47.Barboni D, Bremond L. Phytoliths of East African grasses: an assessment of their environmental and taxonomic significance based on floristic data. Rev Palaeobot Palynol. 2009;158(1-2):29-41. http://
  • 48.Fenwick RSH, Lentfer CJ, Weisler MI. Palm reading: a pilot study to discriminate phytoliths of four Arecaceae (Palmae) taxa. J Archaeol Sci. 2011;38(9):2190-2199.
  • 49.Thorn VC. Phytoliths from subantarctic Campbell Island: plant production and soil surface spectra. Rev Palaeobot Palynol. 2004;132(1-2):37-59.
  • 50.Shaheen S, Ahmad M, Khan F, Zafar M, Khan MA, Bano A, et al. Micormorphological diversity in leaf epidermal anatomy of Brachiaria species using elemental dispersive spectrophotometer analysis. J Med Plant Res. 2011;5:4279-4286.
  • 51.Aiken SG, Dallwitz MJ, Consaul LL, McJannet CL, Boles RL, Argus GW, et al. Flora of the Canadian Arctic Archipelago: descriptions, illustrations, identification, and information retrieval [Internet]. Ottawa: NRC Research Press, National Research Council of Canada; 2007 [cited 2014 Aug 18]; Available from:
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.