PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 64 | 3 |

Tytuł artykułu

Reconstruction of oviraptorid clutches illuminates their unique nesting biology

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Oviraptorosaurs, a group of non-avian theropod dinosaurs from the Cretaceous of Asia and North America, left behind the most abundant and informative fossil evidence of dinosaur reproductive biology. Previous studies had suggested that oviraptorosaur reproductive biology represents an intermediate stage and exhibited unique modern avian traits. For instance, the adult-associated clutches were predominantly considered as evidence for brooding/thermoregulatory contact incubation (TCI) behaviors, whereas the hypotheses of laying or protection were neglected. Despite numerous oviraptorid egg clutches uncovered from China and Mongolia, their nest architecture and clutch arrangement were rarely investigated in detail. Here we present a comprehensive reconstruction of an oviraptorid clutch based on five new oviraptorid clutches from Jiangxi Province, China. A detailed examination of the new clutches reveals a partially-open oviraptorid nest that contains 3–4 rings of paired eggs (more than 15 pairs total) whose blunt end points toward the center devoid of eggs at an angle of 35–40°. Our detailed three-dimensional reconstruction indicates that the oviraptorid clutch has a unique architecture unknown from extant bird clutches, implying an apomorphic nesting mode. Such a unique nest architecture further contradicts the TCI hypothesis in oviraptorids, hindering sufficient heat transfer to the inner (lower) ring(s) of eggs. Moreover, the size of the new oviraptorid clutches (>30 eggs) is significantly larger than that of the adult-associated clutches (<22 eggs), raising the alternative hypothesis that the adult-associated clutches were uncompleted. This clue thus supports the hypothesis that the clutch-associated oviraptorid adults possibly represent females after an oviposition before a catastrophic sandstorm/flooding burial.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

3

Opis fizyczny

p.581-596,fig.,ref.

Twórcy

autor
  • Section Paleontology, Institute of Geosciences, Universität Bonn, Nussallee 8, 53115 Bonn, Germany
  • Department of Earth Sciences, National Cheng Kung University, 70101 Tainan, Taiwan
  • Division of Geology, National Museum of Natural Sciences, 40353 Taichung, Taiwan
autor
  • Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA
autor
  • Henan Geological Museum, 450016 Zhengzhou, China
autor
  • Department of Earth Sciences, National Cheng Kung University, 70101 Tainan, Taiwan
  • Division of Geology, National Museum of Natural Sciences, 40353 Taichung, Taiwan
autor
  • Canadian Museum of Nature, McLeod Street 240, Ottawa, Ontario, Canada
autor
  • Steinmann-Institut fur Geologie, Mineralogie, Palaontologie, Universitat Bonn, Nussallee 8, 53115 Bonn, Germany
  • Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA

Bibliografia

  • Amiot, R., Wang, X., Wang, S., Lécuyer, C., Mazin, J.-M., Mo, J., Flandrois, J.-P., Fourel, F., Wang, X., Xu, X., Zhang, Z., and Zhou, Z. 2017. δ¹⁸O-derived incubation temperatures of oviraptorosaur eggs. Palaeontology 60: 633–647.
  • Barrientos, R., Bueno-Enciso, J., and Sanz, J.J. 2016. Hatching asynchrony vs. foraging efficiency: the response to food availability in specialist vs. generalist tit species. Scientific Reports 6: 37750.
  • Bertram, B.C.R. 1992a. Ecological aspects. In: B.C.R. Bertram (ed.), The Ostrich Communal Nesting System, 71–101. Princeton University Press, Princeton.
  • Bertram, B.C.R. 1992b. The evolution and maintenance of the communal nesting system. In: B.C.R. Bertram (ed.), The Ostrich Communal Nesting System, 159–187. Princeton University Press, Princeton.
  • Bi, S. and Xu, X. 2017. Exceptional fossil confirms brooding behavior in oviraptorosaurian dinosaurs. In: X. Jin (ed.), International Symposium on Dinosaur Egg Research and Exhibition. Program and Abstract Book, 11. Zhejiang Museum of Natural History, Hanzhou.
  • Boulton, R.L. and Cassey, P. 2012. How avian incubation behaviour influences egg surface temperatures: relationships with egg position, development and clutch size. Journal of Avian Biology 43: 289–296.
  • Bureau of Geology and Mineral Resources of Jiangxi Province 1984. Regional Geology of Jiangxi Province. 921 pp. Geological Publishing House, Beijing.
  • Carpenter, K. 1999. Eggs, Nests, and Baby Dinosaurs: A Look at Dinosaur Reproduction. 352 pp. Indiana University Press, Bloomingon.
  • Chaiseha, Y. and El Halawani, M.E. 2015. Brooding. In: C.G. Scanes (ed.), Sturkie’s Avian Physiology (Sixth Edition), 717–738. Academic Press, San Diego.
  • Chambers, G.D., Sadler, K.C., and Breitenbach, R.P. 1966. Effects of dietary calcium levels on egg production and bone structure of pheasants. The Journal of Wildlife Management 30: 65–73.
  • Chiappe, L.M., Schmitt, J.G., Jackson, F.D., Garrido, A., Dingus, L., and Grellet-Tinner, G. 2004. Nest structure for sauropods: sedimentary criteria for recognition of dinosaur nesting traces. Palaios 19 (1): 89–95.
  • Cheng, Y.-N., Ji, C., Wu, X., and Shan, H.-Y. 2008. Oviraptorosaurian eggs (Dinosauria) with embryonic skeletons discovered for the first time in China. Acta Geologica Sinica 82: 1089–1094.
  • Clark, J.M., Norell, M.A., and Barsbold, R. 2001. Two new oviraptorids (Theropoda: Oviraptorosauria), Upper Cretaceous Djadokhta Formation, Ukhaa Tolgod, Mongolia. Journal of Vertebrate Paleontology 21: 209–213.
  • Clark, J.M., Norell, M.A., Chiappe, L.M., and Akademi, M.S.U. 1999. An oviraptorid skeleton from the Late Cretaceous of Ukhaa Tolgod, Mongolia, preserved in an avianlike brooding position over an oviraptorid nest. American Museum Novitates 3265: 1–36.
  • Cook, M.I. and Monaghan, P. 2004. Sex differences in embryo development periods and effects on avian hatching patterns. Behavioral Ecology 15: 205–209.
  • Coombs Jr., W.P. 1989. Modern analogs for dinosaur nesting and parental behavior. Geological Society of America Special Papers 238: 21–53.
  • Davison, I. 1987. Normal fault geometry related to sediment compaction and burial. Journal of Structural Geology 9: 393–401.
  • Dawson, W.R., Bennett, A.F., and Hudson, J.W. 1976. Metabolism and thermoregulation in hatchling ring-billed gulls. The Condor 78: 49–60.
  • Deeming, D.C. 2002. Importance and evolution of incubation in avian reproduction. In: C. Deeming (ed.), Avian Incubation: Behaviour, Environment and Evolution, 1–7. Oxford University Press, Oxford.
  • Deeming, D.C. 2006. Ultrastructural and functional morphologyof eggshells supports the idea that dinosaur eggs were incubated in a substrate. Palaeontology 49: 171–185.
  • Dial, K.P. 2003. Evolution of avian locomotion: correlates of flight style, locomotor modules, nesting biology, body size, development, and the origin of flapping flight. The Auk 120: 941–952.
  • Dong, Z. and Currie, P.J. 1996. On the discovery of an oviraptorid skeleton on a nest of eggs at Bayan Mandahu, Inner Mongolia, People’s Republic of China. Canadian Journal of Earth Sciences 33: 631–636.
  • Eagle, R.A., Enriquez, M., Grellet-Tinner, G., Perez-Huerta, A., Hu, D., Tutken, T., Montanari, S., Loyd, S.J., Ramirez, P., Tripati, A.K., Kohn, M.J., Cerling, T.E., Chiappe, L.M., and Eiler, J.M. 2015. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs. Nature Communications 6: 8296.
  • Erickson, G.M., Curry Rogers, K., Varricchio, D.J., Norell, M.A., and Xu, X. 2007. Growth patterns in brooding dinosaurs reveals the timing of sexual maturity in non-avian dinosaurs and genesis of the avian condition. Biology Letters 3: 558–561.
  • Fang, X.-S., Li, P.-X., Zhang, Z.-J., Zhang, X.-Q., Lin, Y.-L., Guo, S.-B., Cheng, Y.-M., Li, Z.-Y., Zhang, X.-J., and Cheng, Z.-W. 2009. Cretaceous strata in Nanxiong Basin of Guangdong and the evolution from the dinosaur egg to the bird egg. Acta Geoscientica Sinica 30: 167–186.
  • Fanti, F., Currie, P.J., and Badamgarav, D. 2012. New specimens of Nemegtomaia from the Baruungoyot and Nemegt Formations (Late Cretaceous) of Mongolia. PLoS ONE 7: e31330.
  • Ferguson, M.W.J. 1985. Reproductive biology and embryology of the crocodilians. In: C. Gans (ed.), Biology of the Reptilia, 329–491. John Wiley & Sons Inc, New York.
  • Grellet-Tinner, G., Chiappe, L.M., Norell, M.A., and Bottjer, D. 2006. Dinosaur eggs and nesting behaviors: A paleobiological investigation. Palaeogeography, Palaeoclimatology, Palaeoecology 232: 294–321.
  • Hanley, D., Samaš, P., Hauber, M.E., and Grim, T. 2015. Who moved my eggs? An experimental test of the egg arrangement hypothesis for the rejection of brood parasitic eggs. Animal Cognition 18: 299–305.
  • Hansell, M. 2000. The clutch-nest relationship. In: M. Hansell (ed.), Bird Nests and Construction Behaviour, 23–38. Cambridge University Press, Cambridge.
  • He, F., Huang, X., and Li, X. 2017. Occurrence rule and buried characteristics of dinosaur fossils in the Ganzhou Basin, Jiangxi Province. East China Geology 38: 250–254.
  • Hechenleitner, E.M., Grellet-Tinner, G., and Fiorelli, L.E. 2015. What do giant titanosaur dinosaurs and modern Australasian megapodes have in common? PeerJ 3: e1341.
  • Hohtola, E. and Visser, H. 1998. Development of locomotion and endothermy in altricial and precocial birds. In: J.M. Starck and R.E. Ricklefs (eds.), Oxford Ornithology Series, 157–173. Oxford University Press, Oxford.
  • Hopp, T.P. and Orsen, M.J. 2004. Dinosaur brooding behavior and the origin of flight feathers. In: P.J. Currie, E.B. Koppelhus, M.A. Shugar, and J.L. Wright (eds.), Feathered Dragons: Studies on the Transition from Dinosaurs to Birds, 234–250. Indiana University Press, Bloomingon.
  • Horner, J.R. 2000. Dinosaur reproduction and parenting. Annual Review of Earth and Planetary Sciences 28: 19–45.
  • Huh, M., Kim, B.-S., Woo, Y., Simon, D.J., Paik, I.-S., and Kim, H.-J. 2014. First record of a complete giant theropod egg clutch from Upper Cretaceous deposits, South Korea. Historical Biology 26: 218–228.
  • Ji, Q., Currie, P.J., Norell, M.A., and Ji, S. 1998. Two feathered dinosaurs from northeastern China. Nature 393: 753–761.
  • Jones, D.N., Dekker, R.W.R.J., and Roselaar, C.S. 1995. The Megapodes. 304 pp. Oxford University Press, Oxford.
  • Jones, T.D. and Geist, N.R. 2012. Reproductive biology of dinosaurs. In: M.K. Brett-Surman, T.R. Holtz Jr., and J.O. Farlow (eds.), The Complete Dinosaur, 2nd Edition, 603–612. Indiana University Press, Bloomington.
  • Lack, D. 1948. The significance of clutch-size. Part III. Some interspecific comparisons. Ibis 90: 25–45.
  • Longrich, N.R., Currie, P.J., and Dong, Z. 2010. A new oviraptorid (Dinosauria: Theropoda) from the Upper Cretaceous of Bayan Mandahu, Inner Mongolia. Palaeontology 53: 945–960.
  • Lü, J. 2003. A new oviraptorosaurid (Theropoda: Oviraptorosauria) from the Late Cretaceous of southern China. Journal of Vertebrate Paleontology 22: 871–875.
  • Lü, J. and Zhang, B. 2005. A new oviraptorid (Theropoda: Oviraptorosauria) from the Upper Cretaceous of the Nanxiong Basin, Guangdong Province of southern China. Acta Palaeontologica Sinica 44: 412–422.
  • Lü, J., Chen, R., Brusatte, S.L., Zhu, Y., and Shen, C. 2016. A Late Cretaceous diversification of Asian oviraptorid dinosaurs: evidence from a new species preserved in an unusual posture. Scientific Reports 6: 35780.
  • Lü, J., Li, G., Kundrát, M., Lee, Y.-N., Sun, Z., Kobayashi, Y., Shen, C., Teng, F., and Liu, H. 2017. High diversity of the Ganzhou Oviraptorid Fauna increased by a new “cassowary-like” crested species. Scientific Reports 7: 6393.
  • Lü, J., Pu, H., Kobayashi, Y., Xu, L., Chang, H., Shang, Y., Liu, D., Lee, Y., Kundrat, M., and Shen, C. 2015. A new oviraptorid dinosaur (Dinosauria: Oviraptorosauria) from the Late Cretaceous of Southern China and its paleobiogeographical implications. Scientific Reports 5: 11490.
  • Lü, J., Yi, L., Zhong, H., and Wei, X. 2013. A new oviraptorosaur (Dinosauria: Oviraptorosauria) from the Late Cretaceous of southern China and its paleoecological implications. PLoS ONE 8: e80557.
  • Lundy, H. 1969. A review of the effects of temperature, humidity, turning and gaseous environment in the incubator on the hatchability of the hen’s egg. In: T.C. Carter and B.M. Freeman (eds.), The Fertility and Hatchability of the Hen’s Egg, 143–176. Oliver and Boyd, Edinburgh.
  • Mikhailov, K. 1994. Theropod and protoceratopsian dinosaur eggs from the Cretaceous of Mongolia and Kazakhstan. Paleontological Journal 28: 101–120.
  • Mandal, F.B. 2012. Sexual behaviour and parental care. In: F.B. Mandal (ed.), Textbook of Animal Behaviour, 208–247. PHI Learning Pvt. Ltd., New Delhi.
  • Martin, L.D. and Simmons, J. 1995. Theropod dinosaur nesting behavior. In: D.L. Wolberg, K. Gittis, S.A. Miller, L. Carey, and A. Raynor (eds.), Dinofest International Symposium. Philadelphia. Program and Abstract Book, 39. Academy of Natural Sciences, Philadelphia.
  • McLennan, J., Dew, L., Miles, J., Gillingham, N., and Waiwai, R. 2004. Size matters: predation risk and juvenile growth in North Island brown kiwi (Apteryx mantelli). New Zealand Journal of Ecology 28: 241–250.
  • Mou, Y. 1992. Nest environments of the Late Cretaceous dinosaur eggs from Nanxiong Basin, Guangdong Province. Vertebrata PalAsiatica 30: 120–134.
  • Norell, M.A., Balanoff, A.M., Barta, D.E., and Erickson, G.M. 2018. A second specimen of Citipati osmolskae associated with a nest of eggs from Ukhaa Tolgod, Omnogov Aimag, Mongolia. American Museum Novitates 3899: 1–44.
  • Norell, M.A., Clark, J.M., Chiappe, L.M., and Dashzeveg, D. 1995. A nesting dinosaur. Nature 378: 774–776.
  • Norell, M.A., Clark, J.M., Dashzeveg, D., Barsbold, R., Chiappe, L.M., Davidson, A.R., McKenna, M.C., Altangerel, P., and Novacek, M.J. 1994. A theropod dinosaur embryo and the affinities of the Flaming Cliffs dinosaur eggs. Science 266: 779–782.
  • Osborn, H.F. 1924. Three new Theropoda, Protoceratops zone, central Mongolia. American Museum Novitates 144: 1–12.
  • Paul, G.S. 2002. Dinosaur of the Air: The Evolution and Loss of Flight in Dinosaurs. 472 pp. Johns Hopkins University Press, Baltimore.
  • Polačiková, L., Takasu, F., Stokke, B.G., Moksnes, A., Røskaft, E., Cassey, P., Hauber, M.E., and Grim, T. 2013. Egg arrangement in avian clutches covaries with the rejection of foreign eggs. Animal Cognition 16: 819–828.
  • Pu, H., Zelenitsky, D.K., Lü, J., Currie, P.J., Carpenter, K., Xu, L., Koppelhus, E.B., Jia, S., Xiao, L., Chuang, H., Li, T., Kundrát, M., and Shen, C. 2017. Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China. Nature Communications 8: 14952.
  • Romanoff, A.L. and Romanoff, A.J. 1949. The Avian Egg. 918 pp. John Wiley & Sons, New York.
  • Ruben, J.A., Jones, T.D., and Geist, N.R. 2003. Respiratory and reproductive paleophysiology of dinosaurs and early birds. Physiological and Biochemical Zoology 76: 141–164.
  • Ruxton, G.D., Birchard, G.F., and Deeming, D.C. 2014. Incubation time as an important influence on egg production and distribution into clutches for sauropod dinosaurs. Paleobiology 40 (3): 323–330.
  • Sabath, K. 1991. Upper Cretaceous amniotic eggs from Gobi Desert. Acta Palaeontologica Polonica 36: 151–192.
  • Šálek, M.E. and Zárybnická, M. 2015. Different temperature and cooling patterns at the blunt and sharp egg poles reflect the arrangement of eggs in an avian clutch. PLoS ONE 10: e0117728.
  • Sato, T., Cheng, Y.-N., Wu, X., Zelenitsky, D.K., and Hsiao, Y.-F. 2005. A pair of shelled eggs inside a female dinosaur. Science 308: 375–375.
  • Simon, D.J. 2014. Giant Dinosaur (Theropod) Eggs of the Oogenus Macroelongatoolithus (Elongatoolithidae) from Southeastern Idaho: Taxonomic, Paleobiogeographic, and Reproductive Implications. 110 pp. M.Sc. thesis, Montana State University, Bozeman.
  • Tanaka, K., Zelenitsky, D.K., and Therrien, F. 2015. Eggshell porosity provides insight on evolution of nesting in dinosaurs. PLoS ONE 10: e0142829.
  • Tanaka, K., Zelenitsky, D.K., Lü, J., DeBuhr, C.L., Yi, L., Jia, S., Ding, F., Xia, M., Liu, D., Shen, C., and Chen, R. 2018. Incubation behaviours of oviraptorosaur dinosaurs in relation to body size. Biology Letters 14: 30280135.
  • Turner, J.S. 2002. Maintenance of egg temperature. In: J.M. Starck and R.E. Ricklefs (eds.), Oxford Ornithology Series, 119–142. Oxford University Press, Oxford.
  • Varricchio, D.J. and Jackson, F.D. 2003. Origins of avian reproduction: answers and questions from dinosaurs. Palaeovertebrata 32: 149–169.
  • Varricchio, D.J. and Jackson, F.D. 2016. Reproduction in Mesozoic birds and evolution of the modern avian reproductive mode. The Auk 133: 654–684.
  • Varricchio, D.J., Jackson, F., Borkowski, J.J., and Horner, J.R. 1997. Nest and egg clutches of the dinosaur Troodon formosus and the evolution of avian reproductive traits. Nature 385: 247–250.
  • Varricchio, D.J., Jackson, F.D., Jackson, R.A., and Zelenitsky, D.K. 2013. Porosity and water vapor conductance of two Troodon formosus eggs: an assessment of incubation strategy in a maniraptoran dinosaur. Paleobiology 39: 278–296.
  • Varricchio, D.J., Moore, J.R., Erickson, G.M., Norell, M.A., Jackson, F.D., and Borkowski, J.J. 2008. Avian paternal care had dinosaur origin. Science 322: 1826–1828.
  • Vila, B., Jackson, F.D., Fortuny, J., Sellés, A.G., and Galobart, À. 2010. 3-D modelling of megaloolithid clutches: Insights about nest construction and dinosaur behaviour. PLoS ONE 5: e10362.
  • Wang, C. and Jan, S. 1963. The taphonomy of fossil reptilian eggs from Shang dong and Guangdong Provinces. Vertebrata PalAsiatica 7: 368–369.
  • Wang, Q., Wang, X., Zhao, Z., and Jiang, Y. 2010. A new oogenus of Elongatoolithidae from the Upper Cretaceous Chichengshan Formation of Tiantai Basin, Zhejiang Province. Vertebrata PalAsiatica 48: 111–118.
  • Wang, Q., Zhao, Z., Wang, X., Li, N., and Zou, S. 2013a. A new form of Elongatoolithidae, Undulatoolithus pengi oogen. et oosp. nov. from Pingxiang, Jiangxi, China. Zootaxa 3746: 194–200.
  • Wang, S., Sun, C.K., Sullivan, S.C., and Xu, X. 2013b. A new oviraptorid (Dinosauria: Theropoda) from the Upper Cretaceous of southern China. Zootaxa 3640: 242–257.
  • Wang, S., Zhang, S., Sullivan, C., and Xu, X. 2016. Elongatoolithid eggs containing oviraptorid (Theropoda, Oviraptorosauria) embryos from the Upper Cretaceous of Southern China. BMC Evolutionary Biology 16: 1–21.
  • Wang, Y., Li, X., Zhou, Y., and Liu, L. 2015. Paleoclimate indication of terrigenous clastic rock’s component during the Late Cretaceous–Early Paleocene in the Nanxiong Basin. Acta Sedimentologica Sinica 33: 116–123.
  • Webb, G.J.W. and Cooperpreston, H. 1989. Effects of incubation-temperature on crocodiles and the evolution of reptilian oviparity. American Zoologist 29: 953–971.
  • Wei, X.F., Pu, H.Y., Xu, L., Liu, D., and Lü, J.C. 2013. A new oviraptorid dinosaur (Theropoda: Oviraptorosauria) from the Late Cretaceous of Jiangxi Province, southern China. Acta Geologica Sinica 87: 899–904.
  • Weishampel, D.B., Fastovsky, D.E., Watabe, M., Varricchio, D.J., Jackson, F., Tsogtbaatar, K., and Barsbold, R. 2008. New oviraptorid embryos from Bugin-Tsav, Nemegt Formation (Upper Cretaceous), Mongolia, with insights into their habitat and growth. Journal of Vertebrate Paleontology 28: 1110–1119.
  • Werner, J. and Griebeler, E.M. 2013. New insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: Linking fossil evidence to allometries of extant close relatives. PLoS ONE 8: e72862.
  • Whittow, G.C. and Tazawa, H. 1991. The early development of thermoregulation in birds. Physiological Zoology 64: 1371–1390.
  • Wiemann, J., Yang, T.-R., Sander, P.N., Schneider, M., Engeser, M., Kath-Schorr, S., Müller, C.E., and Sander, P.M. 2017. Dinosaur origin of egg color: oviraptors laid blue-green eggs. PeerJ 5: e1323.
  • Xu, X. and Han, F.L. 2010. A new oviraptorid dinosaur (Theropoda: Oviraptorosauria) from the Upper Cretaceous of China. Vertebrata PalAsiatica 48: 11–18.
  • Yang, T.-R. 2018. The Reproductive Biology of Cretaceous Oviraptorid Dinosaurs and Its Implications for the Origin of Bird Reproduction. 265 pp. Ph.D. Thesis, Rheinische Friedrich-Wilhelms Universität, Bonn.
  • Yang, T.-R., Sander, P.M., Wiemann, J., and Cheng, Y.-N. 2015. Reproductive biology of the oviraptorid dinosaurs revealed by the interpreted egg inner structures. In: A. Canoville, J. Mitchell, K. Stein, D. Konietzko-Meier, E. Teschner, A. van Heteren, and P. M. Sander (eds.), 3rd International Symposium Paleohistology. Program and Abstract Book, 33. University of Bonn, Bonn.
  • Yang, T.-R., van Heteren, A., Wiemann, J., Chen, C.-J., and Spiering, B. 2016. Communal nesting behavior of dinosaurs revealed by statistical analyses of phosphorus distribution in, and external morphology of, eggshells. In: A. Farke, A. MacKenzie, and J. Miller-Camp (eds.), SVP 76th Annual Meeting, Program and Abstracts, 255. Society of Vertebrate Paleontology, Salt Lake City.
  • Young, C. 1965. Fossil eggs from Nanhsiung, Kwangtung and Kanchou, Kiangsi. Vertebrata PalAsiatica 9: 141–189.
  • Zelenitsky, D.K., Therrien, F., Erickson, G.M., DeBuhr, C.L., Kobayashi, Y., Eberth, D.A., and Hadfield, F. 2012. Feathered non-avian dinosaurs from North America provide insight into wing origins. Science 338: 510–514.
  • Zhao, H. and Zhao Z. 1999. A new form of elongatoolithid dinosaur eggs from the Lower Cretaceous Shahai Formation of Heishan, Liaoning Province. Vertebrata PalAsiatica 37: 278–284.
  • Zhao, Z. 1975. The microstructure of the dinosaurian eggshells of Nan xiong, Guangdong Province—on the classification of dinosaur eggs. Vertebrata PalAsiatica 13: 105–117.
  • Zhao, Z. 2000. Nesting behavior of dinosaurs as interpreted from the Chinese Cretaceous dinosaur eggs. Paleontological Society of Korea, Special Publication 4: 115–126.
  • Zhao, Z. 2003. The nesting behavior of troodontid dinosaurs. Vertebrata PalAsiatica 41: 157–157.
  • Zhao, Z., Wang, Q., and Zhang S. 2015. Dinosaur eggs [in Chinese]. Palaeovertebrata Sinica, Volme II, Amphibians, Reptilians, and Avians, Fascicle 7 (Serial no. 11): 1–168.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-23cb972c-f914-4a8d-b607-e295ffd0cc61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.