PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 72 | 2 |

Tytuł artykułu

Photosynthetic performance of young maize (Zea mays L.) plants exposed to chilling stress can be improved by the application of protein hydrolysates

Treść / Zawartość

Warianty tytułu

PL
Wpływ hydrolizatów białkowych na wydajność fotosyntetyczną młodych roślin kukurydzy (Zea mays L.) poddanych stresowi chłodu

Języki publikacji

EN

Abstrakty

EN
Biostimulants offer a novel approach for the regulation of crucial physiological processes in plants. Recently, it has been observed that the application of biostimulants on both seeds and plants may ameliorate to some extent the negative effects of abiotic stresses such as drought, heat, salinity, and others. In the climate conditions of Bulgaria, the early developmental stages of warm climate crops, like maize, often occur under suboptimal temperatures. Although the mitigation of abiotic stress is perhaps the most frequently cited benefit of biostimulant formulations, little is known about their influence on chilling-stressed plants. The aim of our study was to evaluate the effects of a biostimulant from the group of protein hydrolysates on both the growth and the photosynthetic performance of chilling-exposed young maize plants grown in controlled environment. Here, we report that application of a protein hydrolysate increased the performance of chilled maize plants, as demonstrated by leaf gas exchange, photosynthetic pigment content, and chlorophyll fluorescence, but did not affect their growth. Nevertheless, based on the better preserved photosynthetic performance of the biostimulant-treated maize plants exposed to chilling, we assume that under subsequent favorable conditions their growth would recover more quickly as compared to the untreated ones.
PL
Zastosowanie biostymulantów jest nowatorskim sposobem regulacji procesów fizjologicznych w roślinach. W ostatnich latach dowiedziono również, że ich aplikacja, zarówno na nasiona jak i części wegetatywne może w pewnym zakresie niwelować negatywne skutki stresów abiotycznych, między innymi suszy, zasolenia czy zbyt wysokiej temperatury. W warunkach klimatycznych Bułgarii wczesne fazy rozwoju roślin uprawnych pochodzących z cieplejszych stref klimatycznych, na przykład kukurydzy, odbywają się w okresach panowania temperatur suboptymalnych. Mimo, że łagodzenie negatywnych skutków stresu jest jednym z najczęściej podawanych korzystnych efektów działania biostymulantów, wiedza na temat ich wpływu na rośliny poddane stresowi chłodu jest wciąż niewystarczająca. Celem badań była ocena działania biostymulantów z grupy hydroli- zatów białkowych na wzrost i przebieg procesu fotosyntezy kukurydzy uprawianej w warunkach obniżonej temperatury. Aplikacja hydrolizatów białkowych miała pozytywny wpływ na wymianę gazową, zawartość barwników fotosyntetycznych i sprawność aparatu fotosyntetycznego mierzoną parametrami fluorescencji chlorofilu a, ale nie wpłynęła na wzrost roślin. Na podstawie uzyska -nych wyników można przypuszczać, że ze względu na sprawniejszy przebieg procesu fotosyntezy, rośliny kukurydzy poddane działaniu zbyt niskiej temperatury we wczesnych etapach rozwoju i potraktowane biostymulantami będą rosły lepiej po ustąpieniu suboptymalnych temperatur w porównaniu z roślinami nie poddanymi działaniu biostymulantów.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

72

Numer

2

Opis fizyczny

Article: 1769 [8 p.], ref.

Twórcy

  • Department of Plant Physiology and Biochemistry, Agricultural University of Plovdiv, Mendeleev 12, Plovdiv 4000, Bulgaria
autor
  • Department of Plant Physiology and Biochemistry, Agricultural University of Plovdiv, Mendeleev 12, Plovdiv 4000, Bulgaria
autor
  • Department of Plant Physiology and Biochemistry, Agricultural University of Plovdiv, Mendeleev 12, Plovdiv 4000, Bulgaria

Bibliografia

  • Sharma HSS, Fleming C, Selby C, Rao JR, Martin T. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol. 2014;26:465–490. https://doi.org/10.1007/s10811-013-0101-9
  • Du Jardin P. Plantbiostimulants: definition, concept, main categories and regulation. Sci Hortic (Amsterdam). 2015;196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021
  • Yakhin OI, Lubyanov AA, Yakhin IA. Biostimulants in agrotechnologies: problems, solutions, outlook. Agrochemical Herald. 2016;1:15–21.
  • European Biostimulants Industry Council [Internet]. 2019 [cited 2019 Jun 19]. Available from: http://www.biostimulants.eu/
  • Ertani A, Francioso O, Tugnoli V, Righi V, Nardi S. Effect of commercial Lignosulfonate-Humate on Zea mays L. metabolism. J Agric Food Chem. 2011;59:11940–11948. https://doi.org/10.1021/jf202473e
  • Jannin L, Arkoun M, Ourry A, Laîné P, Goux D, Garnica M, et al. Microarray analysis of humic acid effects on Brassica napus growth: involvement of N, C and S metabolisms. Plant Soil. 2012;359:297–319. https://doi.org/10.1007/s11104-012-1191-x
  • Craigie JS. Seaweed extract stimuli in plant science and agriculture. J Appl Phycol. 2011;23:371–393. https://doi.org/10.1007/s10811-010-9560-4
  • Ertani A, Pizzeghello D, Francioso O, Sambo P, Sanchez-Cortes S, Nardi S. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomic approaches. Front Plant Sci. 2014;5:375. https://doi.org/10.3389/fpls.2014.00375
  • Colla G, Rouphael Y, Canaguier R, Svecova E, Cardarelli M. The biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front Plant Sci. 2014;5:448. https://doi.org/10.3389/fpls.2014.00448
  • Ertani A, Schiavon M, Muscolo A, Nardi S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil. 2013;364:145–158. https://doi.org/10.1007/s11104-012-1335-z
  • Rodríguez-Morgado B, Gómez I, Parrado J, Tejada M. Behaviour of oxyfluorfen in soils amended with edaphic biostimulants/biofertilizers obtained from sewage sludge and chicken feathers. Effects on soil biological properties. Environ Sci Pollut Res Int. 2014;21:11027–11035. https://doi.org/10.1007/s11356-014-3040-3
  • Rouphael Y, de Micco V, Arena C, Raimondi G, Colla G, de Pascale S. Effect of Ecklonia maxima sea weed extract on yield, mineral composition, gas exchange and leaf anatomy of zucchini squash grown under saline conditions. J Appl Phycol. 2017;29:459–470. https://doi.org/10.1007/s10811-016-0937-x
  • Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguier R, et al. Protein hydrolysates as biostimulants in horticulture. Sci Hortic (Amsterdam). 2015;96:28–38. https://doi.org/10.1016/j.scienta.2015.08.037
  • Nardi S, Pizzeghello D, Schiavon M, Ertani A. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci Agric. 2016;73:18–23. https://doi.org/10.1590/0103-9016-2015-0006
  • Brown P, Saa S. Biostimulants in agriculture. Front Plant Sci. 2015;6:671. https://doi.org/10.3389/fpls.2015.00671
  • Schaafsma G. Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. Eur J Clin Nutr. 2009;63:1161–1168. https://doi.org/10.1038/ejcn.2009.56
  • Grabowska A, Kunicki E, Sękara A, Kalisz A, Wojciechowska R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Vegetable Crops Research Bulletin. 2012;77:37–48. https://doi.org/10.2478/v10032-012-0014-1
  • Cavani L, Halle AT, Richard C, Ciavatta C. Photosensitizing properties of protein hydrolysate-based fertilizers. J Agric Food Chem. 2006;54:9160–9167. https://doi.org/10.1021/jf0624953
  • Schiavon M, Ertani A, Nardi S. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of TCA cycle and N metabolism in Zea mays L. J Agric Food Chem. 2008;56:11800–11808. https://doi.org/10.1021/jf802362g
  • de Lucia B, Vecchietti L. Type of bio-stimulant and application method effects on stem quality and root system growth in L.A. Lily. Eur J Hortic Sci. 2012;77:10–15.
  • Cerdán M, Sánchez‐Sánchez A, Jordá JD, Juárez M, Sánchez‐Andreu J. Effect of commercial amino acids on iron nutrition of tomato plants grown under lime-induced iron deficiency. J Plant Nutr Soil Sci. 2013;176:859–866. https://doi.org/10.1002/jpln.201200525
  • Colla G, Svecová E, Cardarelli M, Rouphael Y, Reynaud H, Canaguier R, et al. Effectiveness of a plant-derived protein hydrolysate to improve crop performances under different growing conditions. Acta Hortic. 2013;1009:175–179. https://doi.org/10.17660/ActaHortic.2013.1009.21
  • Botta A. Enhancing plant tolerance to temperature stress with amino acids: an approach to their mode of action. Acta Hortic. 2013;1009:29–35. https://doi.org/10.17660/ActaHortic.2013.1009.1
  • Leipner J, Stamp P. Chilling stress in maize seedlings. In: Bennetzen JL, Hake SC, editors. Handbook of maize: its biology. Heidelberg: Springer; 2009. p. 291–310. https://doi.org/10.1007/978-0-387-79418-1_15
  • Zaidi PH, Yadav M, Maniselvan P, Khan R, Shadakshari TV, Singh RP, et al. Morpho-physiological traits associated with cold stress tolerance in tropical maize (Zea mays L.). Maydica. 2010;55:201–208.
  • Stamp P. Chilling tolerance of young plants demonstrated on the example of maize (Zea mays L.). In: Geisler G, editor. Advances in agriculture and crop science. Vol. 7. Berlin: Paul Parey; 1984. p. 1–84.
  • Lichtenthaler H. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350–382. https://doi.org/10.1016/0076-6879(87)48036-1
  • Genty B, Briantais J, Baker N. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta. 1989;990:87–92. https://doi.org/10.1016/S0304-4165(89)80016-9
  • Schreiber U. Pulse amplitude modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, editor. Chlorophyll a fluorescence: a signature of photosynthesis Dordrecht: Kluwer Academic; 2004. p. 279–319. https://doi.org/10.1007/978-1-4020-3218-9_11
  • Haldimann P. Low growth temperature-induced changes to pigment composition and photosynthesis in Zea mays genotypes differing in chilling sensitivity. Plant Cell Environ. 1998;21(2):200–208. https://doi.org/10.1046/j.1365-3040.1998.00260.x
  • Bolhar-Nordenkampf H, Oquist G. Chlorophyll fluorescence as a tool in photosynthesis research. In: Hall DO, Scurlock JMO, Bolnar-Nordenkampf HR, Leegood RC, Long SP, editors. Photosynthesis and production in a changing environment: a field and laboratory manual. London: Chapman and Hall; 1993. p. 193–205. https://doi.org/10.1007/978-94-011-1566-7_12
  • Bilska A, Sowiński P. Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis. Ann Bot. 2010;106(5):675–686. https://doi.org/10.1093/aob/mcq169
  • Cholakova-Bimbalova R, Vassilev A. Influence of biostimulants on growth and photosynthetic performance of young maize (Z. mays L.) plants exposed to chilling stress. Proceedings Conference of Agronomy Students. 2017;10(10):28–37.
  • Sowinski P, Rudzinska-Langwald A, Adamczyk J, Kubica I, Fronk J. Recovery of maize seedlings growth, development and photosynthetic efficiency after initial growth at low temperature. J Plant Physiol. 2005;162:67–80. https://doi.org/10.1016/j.jplph.2004.03.006
  • Al-Shoaibi A. Photosynthetic response to the low temperature in elephant grass (Peninsetum purpureum) and Zea mays. Int J Bot. 2008;4(3):309–314. https://doi.org/10.3923/ijb.2008.309.314
  • Kosová K, Haisel D, Tichá I. Photosynthetic performance of two maize genotypesas affected by chilling stress. Plant Soil Environ. 2005;51:206–212. https://doi.org/10.17221/3575-PSE
  • Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol. 2010;36:662–669. https://doi.org/10.1007/s10886-010-9790-6
  • Teixeira, W, Fagan E, Soares L, Umburanas R, Reichardt K, Neto D. Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Front Plant Sci. 2017;8:327. https://doi.org/10.3389/fpls.2017.00327
  • Ertani A, Schiavon M, Nardi S. Transcriptome-wide identification of differentially expressed genes in Solanum lycopersicon L. in response to an alfalfa-protein hydrolysate using microarrays. Front Plant Sci. 2017;8:1159. https://doi.org/10.3389/fpls.2017.01159

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2385240d-427c-4b9d-9619-e47cae9cb14b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.