PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 6 |

Tytuł artykułu

Effects of unpowered complex eco-technology on sewage purification in central chinese rural areas

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Considering the characteristics of rural domestic sewage in central China, an unpowered complex ecotechnology composed of anaerobic baffled reactor (ABR), composite soil filling (CSF) system, and free water surface (FWS) constructed wetland was developed to treat rural sewage. The Guogang Village sewage treatment demonstration project at Xinmi City showed that the complex ecosystem had remarkable pollutant removal efficiency. The removal rate was over 90% for chemical oxygen demand and total phosphorus, and over 70% and 80% for TN and NH4₄⁺-N, respectively. The effluent concentration met the integrated wastewater discharge standard of China (GB18918-2002) level 1B. The complex eco-technology could effectively purify water quality, and it was cheaper and had simpler operation. Thus, it could be considered as an effective method for treating rural domestic sewage.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

6

Opis fizyczny

p.1595-1602,fig.,ref.

Twórcy

autor
  • College of Chemistry and Molecular Engineering /Research Institute of Environmental Science, Zhengzhou University, Zhengzhou, 450001, China
autor
  • College of Chemistry and Molecular Engineering /Research Institute of Environmental Science, Zhengzhou University, Zhengzhou, 450001, China
autor
  • College of Chemistry and Molecular Engineering /Research Institute of Environmental Science, Zhengzhou University, Zhengzhou, 450001, China
autor
  • College of Chemistry and Molecular Engineering /Research Institute of Environmental Science, Zhengzhou University, Zhengzhou, 450001, China
autor
  • College of Chemistry and Molecular Engineering /Research Institute of Environmental Science, Zhengzhou University, Zhengzhou, 450001, China
autor
  • College of Chemistry and Molecular Engineering /Research Institute of Environmental Science, Zhengzhou University, Zhengzhou, 450001, China

Bibliografia

  • 1. Ministry of Environmental Protection of the People′s Republic of China. China environmental state bulletin: 2007. Beijing: Ministry of Environmental Protection, 41, 2008.
  • 2. SU D.H., ZHENG Z., WANG Y., LUO X.Z., WU W.J. Discussion on treatment technology of rural domestic wastewater. Environ. Sci. Technol., 28, (1), 79, 2005 [In Chinese].
  • 3. WANG M., WEBBER M., FINLAYSON B., BARNETT J. Rural industries and water pollution in China. J. Environ. Manage., 86, 648, 2008.
  • 4. NAIR J. Wastewater garden – a system to treat wastewater with environmental benefits to community. Water Sci. Technol., 58, (2), 413, 2008.
  • 5. IZQUIERDOA F., CASTRO-HERMIDA, J.A., FENOYA S., MEZOB M., GONZÁLEZ-WARLETAB M., DEL AGUILAA C. Detection of microsporidia in drinking water, wastewater and recreational rivers. Water Res., 45, (16), 4837, 2011.
  • 6. WANG J.Y., DA L.J., SONG K., LI B.L. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China. Environ. Pollut., 152, 387, 2008.
  • 7. CAO W.Z., HONG H.S., ZHANG Y.Z., CHEN N.W., ZENG Y., WANG Y.P. Anthropogenic nitrogen sources and exports in a village-scale catchment in Southeast China. Environ. Geochem. Hlth., 28, 45, 2006.
  • 8. ZHANG D.Q., GERSBERGB R.M., KEATC T.S. Constructed wetlands in China. Ecol. Eng., 10, (35), 1367, 2009.
  • 9. KUMAR J.L.G., ZHAO Y.Q. A review on numerous modeling approaches for effective, economical and ecological treatment wetlands. J. Environ. Manage., 92, 400, 2011.
  • 10. BABRT W.P., STUCKEY D.C. The use of anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Res., 33, (7), 1559, 1999.
  • 11. NACHAIYASIT S., STUCKEY D.C. Effect of low temperatures on the performance of an anaerobic baffled reactor (ABR). J. Chem. Technol. Biot., 69, (2), 276, 1997.
  • 12. MICHIO M., NOBUYUKI S., AYA A., NORIHIDE N., ARATA H., TOSHIYA K., HIDESHIGE T., HIROAKI T., YOSHIRO O., HIROAKI F. Multiple evaluations of the removal of pollutants in road runoff by soil infiltration. Water Res., 42, (10), 2745, 2008.
  • 13. KADLEC R.H. Comparison of free water and horizontal subsurface treatment wetland. Ecol. Eng., 2, (35), 159, 2009.
  • 14. SONG Z.W., ZHENG Z.P., LI J., SUN X.F., HAN X.Y., WANG W., XU M. Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China. Ecol. Eng., 26, (3), 272, 2006.
  • 15. WU Y., CHUNG A., TAM N.F.Y., PI N., WONG M.H. Constructed mangrove wetland as secondary treatment system for municipal wastewater. Ecol. Eng., 34, (2), 137, 2008.
  • 16. Water and Wastewater Monitor and Analysis Method Editorial Board of SEPA of China. Water and wastewater monitoring analysis method. China Environmental Science Press, Bei Jing, 4th ed. 2002.
  • 17. MEPC (Ministry of Environmental Protection of China). Environmental Quality Standard for Surface Water in China (GB3838-2002), Beijing, pp. 28, 2002.
  • 18. TAYLOR C.R., HOOK P.B., STEIN O.R., ZABINSKI C.A. Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms. Ecol. Eng., 37, 703, 2011.
  • 19. LUANMANEE S., BOONSOOK P., ATTANANDANA T., SAITTHITI B., PANICHAJAKUL C., WAKATSUKI T. Effect of intermittent aeration regulation of a multi-soil-layering system on domestic wastewater treatment in Thailand. Ecol. Eng., 18, (4), 415, 2004.
  • 20. WEI C.J., WU W.Z., YANG F.L., HE B., LI C. Multi-soillayer treatment technology: current status and future perspectives. Acta Sci. Circumst., 29, (7), 1351, 2009.
  • 21. HU L.M., HU W.P., DENG J.C., LI Q.Q., GAO F., ZHU J.G., HAN T. Nutrient removal in wetlands with different macrophyte structures in eastern Lake Taihu, China. Ecol. Eng., 36, 1725, 2010.
  • 22. AIYUK S., FORREZ L., LIEVEN D.K., HAANDEL A.V., Verstraete W. Anaerobic and complementary treatment of domestic sewage in regions with hot climates – A review. Bioresource Technol., 97, (17), 2225, 2006.
  • 23. ZHOU S., HOSOMI M. Nitrogen transformations and balance in a constructed wetland for nutrient-polluted river water treatment using forage rice in Japan. Ecol. Eng., 32, (2), 147, 2008.
  • 24. CHU L.B., WANG J.L. Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor. Chem. Eng. J., 170, (1), 220, 2011.
  • 25. STENSTROM M.K., PODUSKA R.A. The effect of dissolved oxygen concentration on nitrification. Water Res., 14, (6), 643, 1980.
  • 26. ALAR N., ELAR P., ULO M. The effect of pre-aeration on the purification processes in the long-term performance of a horizontal subsurface flow constructed wetland. Sci. Total Environ., 380, (1-3), 229, 2007.
  • 27. VYMAZAL J. Removal of phosphorus in constructed wetlands with horizontal sub-surface flow in Czech republic. Water Air Soil Poll., 4, 657, 2004.
  • 28. DEBING J., LIANBI Z., XIAOSONG Y., JIANMING H., MENGBIN Z., YUZHONG W. COD, TN and TP removal of Typha wetland vegetation of different structures. Pol. J. Environ. Stud., 18, (2), 183, 2009.
  • 29. CUI L.H., OUYANG Y., CHEN Y., ZHU X.Z., ZHU W.L. Removal of total nitrogen by Cyperus alternifolius from wastewaters in simulated vertical-flow constructed wetlands. Ecol. Eng., 35, 1271, 2009.
  • 30. SEO D.C., CHO J.S., LEE H.J., HEO J.S. Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Res., 39, (11), 2445, 2005.
  • 31. XIU C.H., JIAO Y.Y, WU D.J., Surface-flow constructed wetland for improvement of water quality into Yuqing Lake reservoir. China Water & Wastewater. 24, (13), 100, 2008 [In Chinese].
  • 32. KEMAL G., BILAL T. A serially connected sand filtration and constructed wetland system for small community wastewater treatment. Ecol. Eng., 35, 1208, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-235311de-73a0-48b4-912b-502b6aee0877
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.