PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 72 | 1 |

Tytuł artykułu

Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming

Treść / Zawartość

Warianty tytułu

PL
Łagodzenie niekorzystnego wpływu stresu solnego na kiełkowanie, wzrost, wydajność fotosyntetyczną oraz plon kukurydzy (Zea mays L.) poprzez magnetyczną stymulację nasion

Języki publikacji

EN

Abstrakty

EN
The efficiency of magnetopriming was evaluated for mitigation of the detrimental effects of salt stress on maize germination, growth, photosynthesis, and yield of maize plants. Maize seeds were pretreated with 200 mT of static magnetic field (SMF) for 1 h to assess the impact of SMF on the germination, seedling vigor, growth of plant, photosynthetic performance, ROS content, and yield under salt stress. The seedling characteristics of maize were negatively influenced by salt stress. However, SMF-pretreated maize seeds showed relatively higher germination percentage and germination stress tolerance index as compared to untreated seeds in saline and nonsaline conditions. The detrimental effect of NaCl induced salt stress was also observed on growth, yield, and different physiological characteristic of maize plants. The results showed that SMF-pretreated seeds enhanced seedling vigor, growth parameters such as plant height, leaf area, and biomass accumulation at different concentrations of NaCl (0, 25, 50, 75, and 100 mM) as compared to untreated seeds. Photosynthetic pigments, quantum yield of PSII photochemistry (Fv/Fm), phenomenological fluxes such as electron transport per leaf CS (ETo/CSm) and density of reaction centers (RC/CSm), the performance index (PI) were high in the leaves of plants that emerged from SMF-pretreated seeds as compared to untreated seeds. This stimulatory effect of SMF treatment of seeds was also revealed in the rate of photosynthesis and stomatal conductance, which results in improved yield of maize plants under saline conditions. The leaves from plants of SMF-treated seeds showed decreased hydrogen peroxide (H2O2) when compared with untreated seeds in both conditions. SMF ameliorates the adverse effect of salt stress in maize plants, by reducing H2O2 and increasing growth, photosynthetic performance, and yield under salt stress. For improvement of salt tolerance, magnetopriming with SMF of 200 mT for 1 h to dry seeds of maize can be efficiently used as a presowing treatment.
PL
W doświadczeniu oceniono efektywność magnetycznej stymulacji nasion w celu łagodzenia szkodliwego wpływu zasolenia na kiełkowanie, wzrost, fotosyntezę i plonowanie kukurydzy (Zea mays L.). Nasiona kukurydzy wstępnie traktowano 200 mT statycznym polem magnetycznym (SMF) przez 1 godzinę w celu oceny jego wpływu na kiełkowanie, żywotność siewek, wzrost roślin, wydajność fotosyntetyczną, zawartość ROS i plonowanie w warunkach zasolenia. Zaobserwowano negatywny wpływ stresu solnego na badane cechy siewek kukurydzy. Nasiona wstępnie traktowane SMF charakteryzował stosunkowo wyższy procent kiełkowania i wskaźnik tolerancji na stres podczas kiełkowania w porównaniu z nasionami nietraktowanymi SMF, zarówno w warunkach zasolenia jak i jego braku. Szkodliwy wpływ indukowanego NaCl stresu solnego stwierdzono również w odniesieniu do wzrostu, plonowania oraz różnych parametrów fizjologicznych roślin kukurydzy. Wyniki wskazują, że traktowanie nasion SMF wpływało na zwiększoną żywotność siewek oraz parametrów wzrostu roślin, takich jak wysokość, powierzchnia liści i biomasa w warunkach zróżnicowanego zasolenia (0, 25, 50, 75 i 100 mM NaCl) w porównaniu z roślinami uzyskanymi z nasion nietraktowanych SMF. Zawartość barwników fotosyntetycznych, maksy-malna wydajność kwantowa fotosystemu PSII (Fv/Fm), fenomenologiczne przepływy energii, takie jak transport elektronów we wzbudzonej powierzchni fotosyntetycznej liścia CS (ETo/CSm) oraz gęstość centrów reakcji (RC/CSm); wskaźnik witalności (PI) był wyższy w roślinach uzyskanych z nasion wstępnie traktowanych SMF w porównaniu z nasionami niepoddanymi jego działaniu. Zastosowanie SMF wywierało stymulujący wpływ także na natężenie fotosyntezy oraz przewodnictwo szparkowe, co skutkowało wyższym plonowaniem roślin kukurydzy w warunkach zasolenia. Liście roślin pochodzących z nasion traktowanych SMF charakteryzował obniżony poziom nadtlenku wodoru (H2O2) w porównaniu z nasionami nietraktowanymi, zarówno w warunkach zasolenia jak i jego braku. SMF łagodzi niekorzystny wpływ stresu solnego na rośliny kukurydzy redukując poziom H2O2 oraz wpływając korzystnie na wzrost, wydajność fotosyntetyczną i plonowanie w warunkach stresu solnego. Magnetyczna stymulacja suchych nasion kukurydzy może być skutecznie stosowana jako metoda ich przedsiewnej obróbki w celu zwiększenia tolerancji roślin na zasolenie.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

72

Numer

1

Opis fizyczny

Article: [16 p.], fig.,ref.

Twórcy

autor
  • Government College of Umarvan, Dhar, Madhya Pradesh, India
autor
  • School of Biochemistry, Devi Ahilya Vishwavidhayala, Khandwa Road, Indore, Madhya Pradesh, India
autor
  • School of Biochemistry, Devi Ahilya Vishwavidhayala, Khandwa Road, Indore, Madhya Pradesh, India

Bibliografia

  • Zhao MG, Tian QY, Zhang WH. Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol. 2007;144:206–217. https://doi.org/10.1104/pp.107.096842
  • Kataria S, Verma SK. Salinity stress responses and adaptive mechanisms in major glycophytic crops: the story so far. In: Kumar V, Wani S, Suprasanna P, Tran LS, editor. Salinity responses and tolerance in plants. Volume 1. Cham: Springer; 2018. p. 1–39. https://doi.org/10.1007/978-3-319-75671-4_1
  • Baghel L, Kataria S, Guruprasad KN. Impact of pre-sowing exposure of seeds to stationary magnetic field on nitrogen and carbon metabolism in maize and soybean. Int J Trop Agric. 2015;33:977–983.
  • Kataria S, Baghel L, Guruprasad KN. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal Agric Biotechnol. 2017;10:83–90. https://doi.org/10.1016/j.bcab.2017.02.010
  • Kataria S, Baghel L, Guruprasad KN. Alleviation of adverse effects of ambient UV stress on growth and some potential physiological attributes in soybean (Glycine max) by seed pre-treatment with static magnetic field. Plant Growth Regul. 2017;36:550–565. https://doi.org/10.1007/s00344-016-9657-3
  • Eşitken A, Turan M. Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria × ananassa cv. Camarosa). Acta Agric Scand B Soil Plant Sci. 2004;54:135–139. https://doi.org/10.1080/09064710310019748
  • Aladjadjiyan A. Use of physical factors as an alternative to chemical amelioration. Journal of Environmental Protection and Ecology. 2003;4:662–667.
  • Kataria S, Baghel L, Guruprasad KN. Effect of seed pretreatment by magnetic field on the sensitivity of maize seedlings to ambient ultraviolet radiation (280-400 nm). Int J Trop Agric. 2015;33:3645–3652.
  • Shine MB, Kataria S, Guruprasad KN, Anjali A. Enhancement of maize seeds germination by magnetopriming in perspective with reactive oxygen species. Journal of Agricultural and Crop Research. 2017;5:66–76.
  • Ružič R, Jerman I. Weak magnetic field decreases heat stress in cress seedlings. Electromagn Biol Med. 2002;21:69–80. https://doi.org/10.1081/JBC-120003112
  • Baghel L, Kataria S, Guruprasad KN. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics. 2016;37:455–470. https://doi.org/10.1002/bem.21988
  • Thomas S, Anand A, Chinnusamy V, Dahuja A, Basu S. Magnetopriming circumvents the effect of salinity stress on germination in chickpea seeds. Acta Physiol Plant. 2013;35:3401–3411. https://doi.org/10.1007/s11738-013-1375-x
  • Baghel L, Kataria S, Guruprasad KN. Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica. 2018;56:718–730. https://doi.org/10.1007/s11099-017-0722-3
  • Anand A, Nagarajan S, Verma AP, Joshi DK, Pathak PC, Bhardwaj J. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian Journal of Biochemistry and Biophysics. 2012;49:63–70.
  • Chen YP, Li R, He JM. Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. Ecotoxicology. 2011;20:760–769. https://doi.org/10.1007/s10646-011-0620-6
  • Farooq M, Hussain M, Wakeel A, Siddique KH. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev. 2015;35:461–481. https://doi.org/10.1007/s13593-015-0287-0
  • Omoto E, Taniguchi M, Miyake H. Adaptation responses in C4 photosynthesis of maize under salinity. J Plant Physiol. 2012;169:469–477. https://doi.org/10.1016/j.jplph.2011.11.009
  • Shine MB, Guruprasad KN. Impact of pre-sowing magnetic field exposure of seeds to stationary magnetic field on growth, reactive oxygen species and photosynthesis of maize under field conditions. Acta Physiol Plant. 2012;34:255–265. https://doi.org/10.1007/s11738-011-0824-7
  • Vashisth A, Nagarajan S. Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics. 2008;29:571–578. https://doi.org/10.1002/bem.20426
  • ISTA. International rules for seed testing. Seed Science and Technology. 1985;13:299–513.
  • Abdul-Baki AA, Anderson JD. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973;13:630–633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  • Ashraf M, Athar HR, Harris PJ, Kwon TR. Some prospective strategies for improving crop salt tolerance. Advances in Agronomy. 2008;97:45–110. https://doi.org/10.1016/S0065-2113(07)00002-8
  • George DW. High temperature seed dormancy in wheat (Triticum aestivum L.). Crop Sci. 1967;7:249–253. https://doi.org/10.2135/cropsci1967.0011183X000700030024x
  • Sawhney S, Toky KL, Nanda KK. Changes in amylase activity during extension growth and floral induction in Impatiens balsamina a qualitative short day plant. Indian J Plant Physiol. 1970;13:198–205.
  • Kunitz M. Crystalline soybean trypsin inhibitor: II. General properties. J Gen Physiol. 1947;30:291–310. https://doi.org/10.1085/jgp.30.4.291
  • Schopfer P. Hydroxyl radical-induced cell wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J. 2001;28:679–688. https://doi.org/10.1046/j.1365-313x.2001.01187.x
  • Mukherjee SP, Choudhuri MA. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant. 1983;58:166–170. https://doi.org/10.1111/j.1399-3054.1983.tb04162.x
  • Hiscox JD, Israelstam GF. A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot. 1979;57:1332–1334. https://doi.org/10.1139/b79-163
  • Wellburn AR, Lichtenthaler H. Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Sybesma C, editor. Advances in photosynthesis research. Dordrecht: Springer; 1984. p. 9–12. (Advances in Agricultural Biotechnology; vol 2). https://doi.org/10.1007/978-94-017-6368-4_3
  • Strasser RJ, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol. 1995;61:32–42. https://doi.org/10.1111/j.1751-1097.1995.tb09240.x
  • Kalaji HM, Bosa K, Kościelniak J, Żuk-Gołaszewska K. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot. 2011;73:64–72. https://doi.org/10.1016/j.envexpbot.2010.10.009
  • Bouslama M, Schapaugh WT. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci. 1984;24:933–937. https://doi.org/10.2135/cropsci1984.0011183X002400050026x
  • Gomes MP, Garcia QS. Reactive oxygen species and seed germination. Biologia. 2013;68:351–357. https://doi.org/10.2478/s11756-013-0161-y
  • Leymarie J, Vitkauskaité G, Hoang HH, Gendreau E, Chazoule V, Meimoun P, et al. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol. 2011;53:96–106. https://doi.org/10.1093/pcp/pcr129
  • Kalaji MH, Guo P. Chlorophyll fluorescence: a useful tool in barley plant breeding programs. Photochemistry Research Progress. 2008;29:439–463.
  • Rochalska M. Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants. Nukleonika. 2005;50:25–28.
  • Javed N, Ashraf M, Akram NA, Al-Qurainy F. Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays L.) by seed electromagnetic treatment. Photochem Photobiol. 2011;87:1354–1362. https://doi.org/10.1111/j.1751-1097.2011.00990.x
  • Razmjoo J, Alinian S. Influence of magnetopriming on germination, growth, physiology, oil and essential contents of cumin (Cuminum cyminum L.). Electromagn Biol Med. 2017;36:325–329. https://doi.org/10.1080/15368378.2017.1373661
  • Rubio F, Gassmann W, Schroeder JI. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science. 1995;270:1660–1663. https://doi.org/10.1126/science.270.5242.1660
  • Kan X, Ren J, Chen T, Cui M, Li C, Zhou R, et al. Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environ Exp Bot. 2017;140:56–64. https://doi.org/10.1016/j.envexpbot.2017.05.019
  • Pereira WE, de Siqueira DL, Martínez CA, Puiatti M. Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J Plant Physiol. 2000;157:513–520. https://doi.org/10.1016/S0176-1617(00)80106-6
  • Tsimilli-Michael M, Strasser RJ. In vivo assessment of stress impact on plant’s vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants. In: Varma A, editor. Mycorrhiza. Berlin: Springer; 2008. p. 679–703. https://doi.org/10.1007/978-3-540-78826-3_32
  • van Heerden J, Ehlers MM, van Zyl WB, Grabow WO. Incidence of adenoviruses in raw and treated water. Water Res. 2003;37:3704–3708. https://doi.org/10.1016/S0043-1354(03)00245-8
  • Christen D, Schönmann S, Jermini M, Strasser RJ, Défago G. Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ Exp Bot. 2007;60:504–514. https://doi.org/10.1016/j.envexpbot.2007.02.003
  • Wen X, Qiu N, Lu Q, Lu C. Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta. 2005;220:486–497. https://doi.org/10.1007/s00425-004-1382-7
  • Rathod GR, Anand A. Effect of seed magneto-priming on growth, yield and Na/K ratio in wheat (Triticum aestivum L.) under salt stress. Indian J Plant Physiol. 2016;21:15–22. https://doi.org/10.1007/s40502-015-0189-9
  • Schubert S, Neubert A, Schierholt A, Sümer A, Zörb C. Development of salt-resistant maize hybrids: the combination of physiological strategies using conventional breeding methods. Plant Sci. 2009;177:196–202. https://doi.org/10.1016/j.plantsci.2009.05.011
  • Kaya C, Ashraf M, Dikilitas M, Tuna AL. Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients – a field trial. Aust J Crop Sci. 2013;7:249.
  • Hussain I, Ashraf MA, Anwar F, Rasheed R, Niaz M, Wahid A. Biochemical characterization of maize (Zea mays L.) for salt tolerance. Plant Biosyst. 2014;148:1016–1026. https://doi.org/10.1080/11263504.2013.798369

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2340d3fe-0bdb-47f0-b2f2-fe8ffd574852
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.