PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 79 | 4 |

Tytuł artykułu

Successful BCI communication via high‑frequency SSVEP or visual, audio or tactile P300 in 30 tested volunteers

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the pursuit to clarify the concept of “BCI illiteracy”, we investigated the possibilities of attaining basic binary (yes/no) communication via brain‑computer interface (BCI). We tested four BCI paradigms: steady‑state visual evoked potentials (SSVEP), tactile, visual, and auditory evoked potentials (P300). The proposed criterion for assessing for the possibility of communication are based on the number of correct choices obtained in a given BCI paradigm after a short calibration session, without prior training. In this study users answered 20 simple “yes/no” questions. Fourteen or more correct answers rejected the null hypothesis of random choices at P=0.05. All of the 30 healthy volunteers were able to attain above‑chance choices in at least one of the four paradigms. Additionally, we tested the system in clinical settings on a patient recovering from disorders of consciousness, achieving successful communication in 2 out of 3 paradigms. In light of these facts, after a review of the sparse literature, and in the interest of motivating further research, we propose a paraphrase of de Finetti’s provocative statement: “BCI illiteracy does not exist”.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

79

Numer

4

Opis fizyczny

p.421-431, fig.,ref.

Twórcy

autor
  • BrainTech Ltd., Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Warsaw, Poland
autor
  • BrainTech Ltd., Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Warsaw, Poland
autor
  • BrainTech Ltd., Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Warsaw, Poland
autor
  • Faculty of Physics, University of Warsaw, Warsaw, Poland
autor
  • BrainTech Ltd., Warsaw, Poland
autor
  • BrainTech Ltd., Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Warsaw, Poland

Bibliografia

  • Ajami S, Mahnam A, Abootalebi  V (2018) Development of a  practical high frequency brain‑computer interface based on steady‑state visual evoked potentials using a single channel of EEG. Biocybern Biomed Eng 38: 106–114.
  • Annen J, Blandiaux S, Lejeune N, Bahri MA, Thibaut A, Cho  W, Guger C, Chatelle C, Laureys S (2018) BCI performance and brain metabolism profile in severely brain‑injured patients without response to command at bedside. Front Neurosci 12: 370.
  • Allison B, Luth T, Valbuena D, Teymourian A, Volosyak I, Graser A (2010) BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng 18: 107–116.
  • Allison BZ, Neuper C (2010) Could anyone use a BCI? In: Brain‑computer interfaces (Tan DS, N. Anton N, Eds.), Springer, London, p. 35–54.
  • Beukelman D, Fager S, Nordness A (2011) Communication support for peo‑ ple with ALS. Neurol Res Int 2011: 714693.
  • Billinger  M, Daly I, Kaiser  V, Jin J, Allison BZ, Müller‑Putz GR, Brunner C (2012) In: Is it significant? Guidelines for reporting BCI performance. In: Towards practical brain‑computer interfaces (Allison BZ, Dunne S, Leeb R, Millan JDR, Nijholt A, Eds.), Springer, p. 333–354.
  • Blankertz B, Sannelli C, Halder S, Hammer EM, Kübler A, Muller KR, Curio G, Dickhaus T (2010) Neurophysiological predictor of SMR‑based BCI performance. Neuroimage 51: 1303–1309. Brouwer AM, Van Erp JB (2010) A tactile P300 brain‑computer interface. Front Neurosci 4: 19.
  • Brunner C, Birbaumer N, Blankertz B, Guger C, Kübler A, Mattia D, del  R. Millán J, Miralles F, Nijholt A, Opisso E, Ramsey N, Salomon P, Müller‑Putz GR (2015) BNCI horizon 2020: towards a roadmap for the BCI community. Brain‑Computer Interfaces 2: 1–10.
  • Carabalona R (2017) The role of the interplay between stimulus type and timing in explaining BCI‑illiteracy for visual P300‑based brain‑computer interfaces. Front Neurosci 11: 363.
  • Combrisson E, Jerbi K (2015) Exceeding chance level by chance: The ca‑ veat of theoretical chance levels in brain signal classification and sta‑ tistical assessment of decoding accuracy. J  Neurosci Methods 250: 126–136.
  • De Finetti B (1992) Theory of probability: A critical introductory treatment. John Wiley and Sons, New York, USA. Dovgialo M, Chabuda A, Duszyk A, Zieleniewska M, Pietrzak M, Różański P, Durka P (2019) Assessment of statistically significant command follow‑ ing in pediatric patients with disorders of consciousness, based upon visual, auditory and tactile event‑related potentials. Int J Neural Syst 29: 1850048.
  • Durka PJ, Kuś R, Żygierewicz J, Michalska  M, Milanowski P, Łabęcki  M, Kruszyński M (2012) User‑centered design of brain‑computer interfaces: OpenBCI.pl and BCI Appliance. Bull Pol Ac Sci Techn 60: 427–431.
  • Edlinger G, Allison BZ, Guger C (2015) How many people can use a  BCI system? In: Clinical systems neuroscience (Kansaku K, Cohen  L, Birbaumer N Eds.), Springer, Tokyo, Japan, p. 33–66.
  • Fisher RS, Harding G, Erba G, Barkley GL, Wilkins A (2005) Photic‑and pat‑ tern‑induced seizures: a review for the epilepsy foundation of America Working Group. Epilepsia 46: 1426–1441.
  • Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI, Kelly JP, Rosenberg JH, Whyte J, Zafonte RD, Zasler ND (2002) The minimal‑ ly conscious state: definition and diagnostic criteria. Neurology 58: 349–353.
  • Giacino JT, Kalmar K, Whyte J (2004) The JFK Coma Recovery Scale‑Revised: measurement characteristics and diagnostic utility. Arch Phys Med Re‑ habil 85: 2020–2029
  • Heilinger A, Ortner R, La Bella V, Lugo ZR, Chatelle C, Laureys S, Spataro R, Guger C (2018) Performance differences using a vibro‑tactile P300 BCI in LIS‑patients diagnosed with stroke and ALS. Front Neurosci 12: 514.
  • Herrmann CS (2001) Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res 137: 346–353.
  • Jin J, Sellers EW, Zhou S, Zhang Y, Wang X, Cichocki A (2015) A P300 brain– computer interface based on a modification of the mismatch negativity paradigm. Int J Neural Syst 25: 1550011.
  • Jones E, Oliphant T, Peterson P (2001) SciPy: Open source scientific tools for Python. Retrieved from http://www.scipy.org (Online; accessed 2018‑12‑17).
  • Kaufmann T, Schulz SM, Köblitz A, Renner G, Wessig C, Kübler A (2013) Face stimuli effectively prevent brain–computer interface inefficiency in patients with neurodegenerative disease. Clin Neurophysiol 124: 893–900.
  • Kübler A, Neumann N, Wilhelm B, Hinterberger T, Birbaumer N (2004) Predictability of brain‑computer communication. J Psychophysiol 18: 121–129.
  • Ledoit O, Wolf  M (2003) Honey, I shrunk the sample covariance matrix. UPF Economics and Business Working Paper No. 691. Retrieved from https://ssrn.com/abstract=433840 Lugo ZR, Rodriguez J, Lechner A, Ortner R, Gantner IS, Laureys S, Noirhomme Q, Guger C (2014) A vibrotactile P300‑based brain–com‑ puter interface for consciousness detection and communication. Clin EEG Neurosci 45: 14–21.
  • Lulé D, Noirhomme Q, Kleih SC, Chatelle C, Halder S, Demertzi A, Bruno MA, Gosseries O, Vanhaudenhuyse A, Schnakers C, Thonnard M, Soddu A, Kübler A, Laureys S (2013) Probing command following in patients with disorders of consciousness using a brain–computer interface. Clin Neu‑ rophysiol 124: 101–106.
  • Müller‑Putz G, Scherer R, Brunner C, Leeb R, Pfurtscheller G (2008) Better than random: a closer look on BCI results. Int J Bioelectromagn 10: 52–55.
  • Nicolas‑Alonso LF, Gomez‑Gil J (2012) Brain computer interfaces, a review. Sensors 12: 1211–1279.
  • Pedregosa F, Varoquaux G, Gramfort A, Michel  V, Thirion B, Grisel O, Blondel M, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit‑learn: Machine learning in python. J Mach Learn Res 12: 2825–2830.
  • Sellers EW, Ryan DB, Hauser CK (2014) Noninvasive brain‑computer inter‑ face enables communication after brainstem stroke. Sci Transl Med 6: 257re7.
  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27: 379–423.
  • Shu X, Chen S, Yao L, Sheng X, Zhang D, Jiang N, Jia J, Zhu X (2018) Fast recognition of BCI‑inefficient users using physiological features from eeg signals: A screening study of stroke patients. Front Neurosci 12: 93.
  • Vidaurre C, Blankertz B (2010) Towards a  cure for BCI illiteracy. Brain Topogr 23: 194–198.
  • Volosyak I, Valbuena D, Luth T, Malechka T, Graser A (2011) BCI demo‑ graphics II: how many (and what kinds of) people can use a high‑fre‑ quency SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng 19: 232–239.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-22fd9ea2-28f2-4e2b-83c3-16b264380fa8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.