PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 6 |

Tytuł artykułu

Involvement of nitrate reduction in the tolerance of tomato (Solanum lycopersicum L.) plants to prolonged root hypoxia

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The putative role of nitrate and nitrate reductase in the tolerance to prolonged hypoxia was investigated in tomato plants. Nitrogen nutrition has been modified either by deprivation of nitrate or by addition of tungstate—an inhibitor of nitrate reductase (NR)—in the culture medium. In the absence of nitrate as well as in the presence of tungstate, plant growth was significantly disturbed. In the presence of nitrate, the growth of hypoxic plants maintained, nitrate absorption and NR activity increased and a significant release of nitrite into the medium was observed. This mechanism of nitrate reduction, called nitrate respiration, could be an alternative pathway to oxygen-dependent respiration during root hypoxia and a transient adaptation of tomato roots to hypoxic conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

32

Numer

6

Opis fizyczny

p.1113-1123,fig.,ref.

Twórcy

autor
  • De´partement des Sciences Biologiques, Faculte´ des Sciences de Tunis, UR d’Ecologie Ve´ge´tale, Campus Universitaire, 1060 Tunis, Tunisia
  • UMR-IBSV (Interactions Biotiques et Sante´ Ve´ge´tale) Centre de Sophia-Antipolis, 400 route des Chappes, BP 167, 06903 Sophia-Antipolis Cedex, France
  • De´partement des Sciences Biologiques, Faculte´ des Sciences de Tunis, UR d’Ecologie Ve´ge´tale, Campus Universitaire, 1060 Tunis, Tunisia
  • UMR-IBSV (Interactions Biotiques et Sante´ Ve´ge´tale) Centre de Sophia-Antipolis, 400 route des Chappes, BP 167, 06903 Sophia-Antipolis Cedex, France

Bibliografia

  • Andrews M (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ 9:511–586
  • Arnon DI (1937) Ammonium and nitrate nitrogen nutrition of barley and rice at different seasons in relation to hydrogen-ion concentrations, manganese, copper and oxygen supplied. Soil Sci 44:91–121
  • Aschi-Smiti S, Bizid E, Hamza M (2003a) Effet de l’hydromorphie sur la croissance de 4 variétés de trèfle (Trifolium subterraneum L.). Agron 23:97–104
  • Aschi-Smiti S, Chaibi W, Brouquisse R, Ricard B, Saglio P (2003b) Assessment of enzyme induction and aerenchyma formation as mechanisms for flooding tolerance in Trifolium subterraneum ‘Park’. Ann Bot 91:195–204
  • Beutler H-O (1984) Ethanol. In: Bergmeyer J, Grassl M (eds) Metabolites 1: carbohydrates, vol VI. Verlag Chemie, Weinheim, pp 598–606
  • Blom CWPM, Voesenek LACJ (1996) Flooding: the survival strategies of plants. Trends Ecol Evol 11:290–295
  • Botrel A, Kaiser WM (1997) Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201:496–501
  • Botrel A, Magne C, Kaiser WM (1996) Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia. Plant Physiol Biochem 34:645–652
  • Bradford KJ, Yang SF (1981) Physiological responses of plants to waterlogging. Hortic Sci 16:3–8
  • Brouquisse R, James F, Raymond P, Pradet A (1992) Asparagine metabolism and nitrogen distribution during protein degradation in sugar-starved maize root tips. Planta 188:384–395
  • Buwalda F, Greenway H (1989) Nitrogen uptake and growth of wheat during O₂ deficiency in root media containing NO₃⁻ only, or NO₃⁻ plus NH₄⁺. New Phytol 111:161–166
  • Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80
  • Chrikova TV, Belonogova VA (1991) Nitrate reductase activity and productivity of grain crops under waterlogged conditions. Sov Soil Sci 22:19–29
  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868
  • Davies DD (1980) Anaerobic metabolism and the production of organic acids. In: Davies DD (ed) The Biochemistry of Plants, vol II. Academic Press, New York, pp 581–611
  • Deng MD, Lamaze T, Morot-Gaudry J (1989) A new experimental approach involving the simultaneous use of tungstate and ammonium for studying the physiological effect of the absence of nitrate reduction. Plant Physiol Biochem 27:690–696
  • Drew MC (1990) Sensing soil oxygen. Plant Cell Environ 13:681–693
  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250
  • Drew MC, Saglio PH, Pradet A (1985) Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen transport. Planta 165:51–58
  • Ferrari TE, Yoder OC, Filner P (1973) Anaerobic nitrite production by plant cells and tissues: evidence for two nitrate pools. Plant Physiol 51:423–431
  • Garcia-Novo F, Crawford RMM (1973) Soil aeration, nitrate reduction and flooding tolerance in higher plants. New Phytol 72:1031–1039
  • Gharbi I, Ricard B, Rolin D, Maucourt M, Andrieu MH, Bizid E, Aschi-Smiti S, Brouquisse R (2007) Effect of hexokinase activity on tomato root metabolism during prolonged hypoxia. Plant Cell Environ 30:508–517
  • Gharbi I, Ricard B, Aschi-Smiti S, Bizid E, Brouquisse R (2009) Increased hexose transport in the roots of tomato plants submitted to prolonged hypoxia. Planta 230:441–448
  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47
  • Gojon A, Bussi C, Grignon C, Salsac L (1991) Distribution of NO₃⁻ reduction between roots and shoots of peach tree seedlings as affected by NO₃⁻ uptake rate. Physiol Plant 82:502–512
  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999–1036
  • Heeb A, Lundegardh B, Ericson T, Savage GP (2005) Effects of nitrate, ammonium and organic-nitrogen-based fertilizers on growth and yield of tomatoes. J Plant Nutr Soil Sci 168:123–129
  • Henshaw TL, Gilbert RA, Scholberg JMS, Sinclair TR (2007a) Soya bean (Glycine max L. Merr.) genotype response to early-season flooding: II. Aboveground growth and biomass. J Agron Crop Sci 193:189–197
  • Henshaw TL, Gilbert RA, Scholberg JMS, Sinclair TR (2007b) Soya bean (Glycine max L. Merr.) genotype response to early-season flooding: I. Root and nodule development. J Agron Crop Sci 193:177–188
  • Horchani F, Aloui A, Brouquisse R, Aschi-Smiti S (2008a) Physiological responses of tomato plants (Solanum lycopersicum) as affected by root hypoxia. J Agron Crop Sci 194:297–303
  • Horchani F, Gallusci P, Baldet P, Cabasson C, Maucourt M, Rolin D, Aschi-Smiti S, Raymond P (2008b) Prolonged root hypoxia induces ammonium accumulation and decreases the nutritional quality of tomato fruits. J Plant Physiol 165:1352–1359
  • Horchani F, Khayati H, Raymond P, Brouquisse R, Aschi-Smiti S (2009) Contrasted effects of prolonged root hypoxia on tomato (Solanum lycopersicum) roots and fruits metabolism. J Agron Crop Sci 195:313–318
  • Irving LJ, Sheng YB, Woolley D, Matthew C (2007) Physiological effects of waterlogging on two lucerne varieties grown under glasshouse conditions. J Agron Crop Sci 193:345–356
  • Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495
  • Lee RB (1978) Inorganic nitrogen metabolism in barley root under poorly aerated conditions. J Exp Bot 29:693–708
  • Lee RB (1979) The release of nitrite from barley roots in response to metabolic inhibitors, uncoupling agents, and anoxia. J Exp Bot 30:119–133
  • Malavolta E (1954) Studies on the nitrogenous nutrition of rice. Plant Physiol 29:98–99
  • Mattana M, Brambilla I, Bertani A, Reggiani R (1996) Expression of nitrogen assimilating enzymes in germinating rice under anoxia. Plant Physiol Biochem 34:653–657
  • Menegus E, Cattaruzza L, Mattana M, Beffagna N, Ragg E (1991) Response to anoxia in rice and wheat seedlings. Plant Physiol 95:760–767
  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71
  • Mommer L, Pederson O, Visser EJW (2004) Acclimation of a terrestrial plant to submergence facilitates gas exchange under water. Plant Cell Environ 27:1281–1287
  • Morard P, Maertens C, Bertoni G, Boisseau Y (1990) Influence de la respiration racinaire sur l’absorption du potassium et du nitrate chez le blé. Compt Rend Biol 311:103–108
  • Morard P, Lacoste L, Silvestre J (2000) The effect of oxygen deficiency on the uptake of water and mineral nutrients by tomato plants in soilless culture. J Plant Nutr 23:1063–1078
  • Morard P, Lacoste L, Silvestre J (2004) Effect of oxygen deficiency on mineral nutrition of excised tomato roots. J Plant Nutr 27:1532–4087
  • Notton BA, Hewitt EJ (1971) The role of tungsten in the inhibition of nitrate reductase activity in spinach leaves. Biochem Biophys Res Commun 44:702–710
  • Peuke AD, Glaab J, Kaiser WM, Jeschlke WD (1996) The uptake and flow of C and N and ions between roots and shoots in Ricinus communis L. IV. Flow and metabolism of inorganic nitrogen and malate depending on nitrogen nutrient and salt treatment. J Exp Bot 47:377–385
  • Pezeshki SR (2001) Wetland plant responses to soil flooding. Environ Exp Bot 46:299–312
  • Prioul JL, Guyot C (1985) Correction par la fertilisation minérale des effets de l’ennoyage sur le blé d’hiver. I. Expérimentation sur sol. Agron 5:743–750
  • Reggiani R, Brambilla I, Bertani A (1985) Effect of exogenous nitrate on anaerobic metabolism in excised rice roots. I. Nitrate reduction and pyridine nucleotide pools. J Exp Bot 36:1193–1199
  • Ricard B, Couee I, Raymond P, Saglio P, Saint-Ges V, Pradet A (1994) Plant metabolism under hypoxia and anoxia. Plant Physiol Biochem 32:1–10
  • Saglio P, Drew MC, Pradet A (1988) Metabolic acclimatation to anoxia induced by low (2–4 KPa partial pressure) oxygen pretreatment (hypoxia) in root tips of Zea mays. Plant Physiol 8:61–66
  • Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970
  • Stoimenova M, Hansch R, Mendel R, Gimmler H, Kaiser WM (2003) The role of nitrate reduction in the anoxic metabolism of roots. I. Characterization of root morphology and normoxic metabolism of wild type tobacco and a transformant lacking root nitrate reductase. Plant Soil 253:145–153
  • Trought MCT, Drew MC (1981) Alleviation of injury to young wheat plants in aerobic solution cultures in relation to the supply of nitrate and other inorganic nutrients. J Exp Bot 32:509–522
  • Vartapetian BB (2006) Plant anaerobic stress as a novel trend in ecological physiology, biochemistry, and molecular biology: further development of the problem. Russ J Plant Physiol 53:711–738
  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20
  • Visser EJW, Blom CWPM, Voesenek LACJ (1996) Flooding-induced adventitious rooting in Rumex: morphology and development in an ecological perspective. Acta Bot Neerl 45:17–28
  • Wallace W (1986) Distribution of nitrate assimilation between the root and shoot of legumes and a comparison with wheat. Physiol Plant 66:630–636
  • Wintermans J, Mots A (1965) Spectrophotometric characteristic of chlorophylls a and b and their pheophytins in ethanol. Biochem Biophys Acta 109:448–453
  • Younis ME, El-Shahaby SA, Abo-Hamed SA, Ibrahim AH (2000) Effects of water stress on growth, pigments and ¹⁴CO₂ assimilation in three sorghum cultivars. J Agron Crop Sci 175:73–82

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-22a6fd58-97c2-47a9-98e5-584e7934dea2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.