PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Nutrient recovery from cyanobacteria biomasses using purple nonsulfur bacterium Rhodopseudomonas palustris

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Occurrences of harmful cyanobacterial blooms are a worldwide environmental problem in most eutrophic lake ecosystems. But what should be noticed is that cyanobacteria can be used as a useful resource due to the wide range of metabolites they produce. Nutrient partitioning using purple nonsulfur bacteria (PNSB) has the potential to biologically concentrate nutrients. The present study evaluated the kinetics of nutrients released from decomposed field blue green algae (BGA) biomasses. The potential of nutrient acquisition from decomposed BGA biomasses for culturing Rhodopseudomonas palustris (R. palustris) was investigated via fed-batch experiments. Results indicated that R. palustris stimulated in algae substrates with algae biomasses ranging from 3.33 to 10 g/L. Removal efficiencies of N and P in the stationary phase of growth were at least 40% and 95%, respectively, of all the nitrogen (N) and phosphorus (P) released. Additionally, the cellular contents like total lipid and poly-β-hydroxybutyrate (PHB), as well as the fatty acids produced by R. palustris, were consistent. Hence, practice based on the bacterial production for the nutrient recovery from BGA biomasses provides a new insight in field algae disposal. It will lower the chances of secondary pollution due to algae decay and produce giant cells of R. palustris and surely will prosper the industries applying R. palustris.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2767-2775,fig.,ref.

Twórcy

autor
  • Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
  • University of Chinese Academy of Sciences, Beijing 100101, China
autor
  • Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
autor
  • Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
  • University of Chinese Academy of Sciences, Beijing 100101, China
autor
  • Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
autor
  • Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
autor
  • Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

Bibliografia

  • 1. WATSON S.B., MOLOT L. Encyclopedia of Aquatic Ecotoxicology: Harmful Algal Blooms. Springer Netherlands, 619 (2), 575, 2015.
  • 2. YANG F., ZHOU Y., YIN L., ZHU G., LIANG G., PU Y. Microcystin-degrading activity of an indigenous bacterial strain Stenotrophomonas acidaminiphila MC-LTH2 isolated from Lake Taihu. PLoS One, 9 (1), e86216, 2014.
  • 3. DUAN H., MA R., XU X., KONG F., ZHANG S., KONG W., HAO J., SHANG L. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ. Sci. Technol. 43 (10), 3522, 2009.
  • 4. CHEN W., JIA Y., LI E., ZHAO S., ZHOU Q., LIU L., SONG L. Soil-based treatments of mechanically collected cyanobacterial blooms from Lake Taihu: efficiencies and potential risks. Environ. Sci. Technol. 46 (24), 13370, 2012.
  • 5. SIALVE B., BERNET N., BERNARD O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 27 (4), 409, 2009.
  • 6. CARDOZO K.H., GUARATINI T., BARROS M.P., FALCÃO V.R., TONON A.P., LOPES N.P., CAMPOS S., TORRES M.A., SOUZA A.O., COLEPICOLO P. Metabolites from algae with economical impact. Comp. Biochem. Phys. C. 146 (1), 60, 2007.
  • 7. KHUSNUTDINOVA A.N., OVCHENKOVA E.P., KHRISTOVA A.P., LAURINAVICHENE T.V., SHASTIK E.S., LIU J., TSYGANKOV A.A. New tolerant strains of purple nonsulfur bacteria for hydrogen production in a two-stage integrated system. Int. J. Hydrogen Energ. 37 (10), 8820, 2012.
  • 8. MUKKATA K., KANTACHOTE D., WITTAYAWEERASAK B., TECHKARNJANARUK S., BOONAPATCHAROEN N. Diversity of purple nonsulfur bacteria in shrimp ponds with varying mercury levels. Saudi J. Biol. Sci. 2015.
  • 9. LARIMER F.W., CHAIN P., HAUSER L., LAMERDIN J., MALFATTI S., DO L., LAND M.L., PELLETIER D.A., BEATTY J.T., LANG A.S., TABITA F.R., GIBSON J.L., HANSON T.E., BOBST C., TORRES J.L., PERES C., HARRISON F.H., GIBSON J., HARWOOD C.S. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat. Biotechnol. 22 (1), 55, 2004.
  • 10. CHEN Y.T., WU S.C., LEE C.M. Relationship between cell growth, hydrogen production and poly-β-hydroxybutyrate (PHB) accumulation by Rhodopseudomonas palustris WP3-5. Int. J. Hydrogen Energ. 37 (18), 13887, 2012.
  • 11. PUYOL D., LU K., HUELSEN T., BARRY E., YUAN Z., BATSTONE D. Poly-phosphate accumulation by purple phototrophic bacteria for total phosphorus reclaim from domestic wastewater. 1st IWA Resource Recovery Conference. 2015.
  • 12. SAKPIROM J., KANTACHOTE D., NUNKAEW T., KHAN E. Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Res. Microbiol. 2016.
  • 13. WU T.Y., HAY J.X.W., KONG L.B., JUAN J.C., JAHIM J.M. Recent advances in reuse of waste material as substrate to produce biohydrogen by purple non-sulfur (PNS) bacteria. Renew. Sust. Energ. Rev. 16 (5), 3117, 2012.
  • 14. SUBASHCHANDRABOSE S.R., RAMAKRISHNAN B., MEGHARAJ M., VENKATESWARLU K., NAIDU R. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol. Adv. 29 (6), 896, 2011.
  • 15. KAWAGUCHI H., HASHIMOTO K., HIRATA K., MIYAMOTO K. H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. J. Biosci. Bioeng. 91 (3), 277, 2001.
  • 16. KIM M., BAEK J., YUN Y., JUNSIM S., PARK S., KIM S. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. Int. J. Hydrogen Energ. 31 (6), 812, 2006.
  • 17. CARVER S.M., HULATT C.J., THOMAS D.N., TUOVINEN O.H. Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production. Biodegradation 22 (4), 805, 2011.
  • 18. HULSEN T., BATSTONE D.J., KELLER J. Phototrophic bacteria for nutrient recovery from domestic wastewater. Water Res. 50, 18, 2014.
  • 19. KONG Q., ZHAI C., GUAN B., LI C., SHAN S., YU J. Mathematic modeling for optimum conditions on aflatoxin B1 degradation by the aerobic bacterium Rhodococcus erythropolis. Toxins (Basel), 4 (11), 1181, 2012.
  • 20. MEKJINDA N., RITCHIE R.J. Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium. Waste Manag. 35, 199, 2015.
  • 21. RITCHIE R.J., RUNCIE J.W. Photosynthetic electron transport in an anoxygenic photosynthetic bacterium Afifella (Rhodopseudomonas) marina measured using PAM fluorometry. Photochem. Photobiol. 89 (2), 370, 2013.
  • 22. PUSHPARAJ B., BUCCIONI A., PAPERI R., PICCARDI R., ENA A., CARLOZZI P., SILI C. Fatty acid composition of Antarctic cyanobacteria. Phycologia 47, 430, 2008.
  • 23. BORMANN E.J., LEISSNER M., BEER B. Growth and formation of poly (hydroxybutyric acid) by Methylobacterium rhodesianum at methanol concentrations of above 25 g/l. Eng. Life Sci. 17 (4), 279, 1997.
  • 24. BUCCIONI A., ANTONGIOVANNI M., PETACCHI F., MELE M., SERRA A., SECCHIARI P., BENVENUTI D. Effect of dietary fat quality on C18:1 fatty acids and conjugated linoleic acid production: An in vitro rumen fermentation study. Anim. Feed Sci. Tech. 127 (3-4), 268, 2006.
  • 25. APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington DC, 1998.
  • 26. WARD A.J., LEWIS D.M., GREEN F.B. Anaerobic digestion of algae biomass: A review. Algal Res. 5, 204, 2014.
  • 27. HIRAISHI A., SHI J.L., KITAMURA H. Effects of organic nutrient strength on the purple nonsulfur bacterial content and metabolic activity of photosynthetic sludge for wastewater treatment. J. Ferment. Bioeng. 68 (4), 269, 1989.
  • 28. ZHANG J., HAN Y., ZHOU J., ZHANG X., CHEN L. Effect of organic matter strength on single-stage nitrogen removal using anammox and partial nitritation (SNAP) for treatment of high strength ammonia wastewater. J. Chem.Pharm. Res. 6 (10),307, 2014.
  • 29. ADESSI A., TORZILLO G., BACCETTI E., DE PHILIPPIS R. Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50 L tubular photobioreactor. Int. J. Hydrogen Energ. 37 (10), 8840, 2012.
  • 30. SUWANSAARD M., CHOORIT W., ZEILSTRARYALLS J.H., PRASERTSAN P. Isolation of anoxygenic photosynthetic bacteria from Songkhla Lake for use in a two-staged biohydrogen production process from palm oil mill effluent. Int. J. Hydrogen Energ. 34 (17), 7523, 2009.
  • 31. VENKATAKRISHNAN H., TAN Y., MAJID M.B.A., PATHAK S., SENDJAJA A.Y., LI D., LIU J.J.L., YAN Z., NG W.J. Effect of a high strength chemical industry wastewater on microbial community dynamics and mesophilic methane generation. J. Environ. Sci. 26 (4), 875, 2014.
  • 32. TANG J.K., SAIKIN S.K., PINGALI S.V., ENRIQUEZ M.M., HUH J., FRANK H.A., URBAN V.S., ASPURU-GUZIK A. Temperature and carbon assimilation regulate the chlorosome biogenesis in green sulfur bacteria. Biophys. J. 105 (6), 1346, 2013.
  • 33. HANNIS K.G. Optical behavior of algae particles in photobioreactors. Thesis, 2013.
  • 34. KIM M.K., CHOI K.M., YIN C.R., LEE K.Y., IM W.T., LIM J.H., LEE S.T. Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnol. Lett. 26 (10), 819, 2004.
  • 35. COTTRELL M.T., RAS J., KIRCHMAN D.L. Bacteriochlorophyll and community structure of aerobic anoxygenic phototrophic bacteria in a particle-rich estuary. ISME J. 4 (7), 945, 2010.
  • 36. OKUBO Y., FUTAMATA H., HIRAISHI A. Characterization of phototrophic purple nonsulfur bacteria forming colored microbial mats in a swine wastewater ditch. Appl. Environ. Microbiol. 72 (9), 6225, 2006.
  • 37. OKUBO Y., FUTAMATA H., HIRAISHI A. Distribution and capacity for utilization of lower fatty acids of phototrophic purple nonsulfur bacteria in wastewater environments. Microbes Environ. 20 (3), 135, 2005.
  • 38. HERRERO M., STUCKEY D.C. Bioaugmentation and its application in wastewater treatment: A review. Chemosphere 140, 119, 2015.
  • 39. IDI A., NOR M.H.M., WAHAB M.F.A., IBRAHIM Z. Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation. Rev. Environ Sci. Bio. 14 (2), 271, 2015.
  • 40. MADUKASI E.I., CHUNHUA H., ZHANG G. Isolation and application of a wild strain photosynthetic bacterium to environmental waste management. Int. J. Environ. Sci. Te. 8 (3), 513, 2011.
  • 41. CARLOZZI P., PINTUCCI C., PICCARDI R., BUCCIONI A., MINIERI S., LAMBARDI M. Green energy from Rhodopseudomonas palustris grown at low to high irradiance values, under fed-batch operational conditions. Biotechnol. Lett. 32 (4), 477, 2009.
  • 42. PHILIPPIS R.D., ENA A., GUASTINI M., SILI C., VINCENZINI M. Factors affecting poly-β-hydroxybutyrate accumulation in cyanobacteria and in purple non-sulfur bacteria. FEMS Microbiol. Lett. 103 (2-4), 187, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-223d810b-c8bf-406c-98c9-f07b046024bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.