PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | 3 |

Tytuł artykułu

Model of a ducted axial-flow hydrokinetic turbine - results of experimental and numerical examination

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The article presents the numerical algorithm of the developed computer code which calculates performance characteristics of ducted axial-flow hydrokinetic turbines. The code makes use of the vortex lattice method (VLM), which has been developed and used in IMP PAN for years, to analyse the operation of various fluid-flow machines. To verify the developed software, a series of model tests have been performed in the cavitation tunnel being part of IMP PAN research equipment

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

3

Opis fizyczny

p.113-122,fig.,ref.

Twórcy

autor
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk, Poland
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk, Poland

Bibliografia

  • 1. Abe K., Nishida M.; Sakurai A.; Ohya Y.; Kihara H.; Wada E.; Sato K., Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser, Journal of Wind Engineering Industrial Aerodynamics, v. 93 (2005) p. 951-970.
  • 2. Bahaj A.S., Molland J.R., Chaplin J.R., Batten W.M.J., Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and towing tank, Renewable Energy 32 (2007) 407-426.
  • 3. Bavanish B., Thyagarajan., Optimization of power coefficient on a horizontal axis wind turbine ising bem theory, Renewable and Sustainable Energy Reviews 26 (2013) 169-182.
  • 4. Clarke J.A., Connor G., Grant A.D., Johnstone C.M., Design and testing of a contra-rotating tidal current turbine, Energy Systems Research Unit, University of Strathclyde, Glasgow UK.
  • 5. Clarke J.A., Connor G., Grant A.D., Johnstone C.M., Mackenzie D., Development of a Contra-Rotating Tidal Current Turbine and Analysis of Performance, Energy Systems Research Unit, University of Strathclyde, Glasgow UK.
  • 6. DØssing M., Vortex Lattice Modelling of Winglets on Wind Turbines Blades, Wind Energy Department – RisØ &Department of Mechanical Engineering – DTU, Denmark 2007, ISBN 978-87-550-3633-8.
  • 7. Durand W., F., “Aerodynamic Theory”, Dover Publication, INC., New York.
  • 8. Glauert H., „Airplane propellers”, In Durand W.F. (ed.) Aerodynamics Theory, 4th edn., Springer, Berlin 1935.
  • 9. Góralczyk A., Extending the vortex lattice method by the procedure calculating the shape of the vortex wake downstream of the rotor (in Polish), Scientific Report of IF-FM PAS, No. 662/2012.
  • 10. Góralczyk A., Numerical algorithm of the procedure taking into account the effect of walls bounding the measuring space of the cavitation tunnel on the performance of hydrokinetic turbines (in Polish), Scientific Report of IF-FM PAS, No. 1012/2014.
  • 11. Góralczyk A., Chaja P., Preliminary laboratory tests and analysis of results oriented on verification of the developed software (in Polish), Scientific Report of IF-FM PAS, No. 759/09.
  • 12. Góralczyk A., Chaja P., Adamkowski A., Method for Calculating Performance Characteristics of Hydrokinetic Turbines, TASK QUARTERLY 15 No 1, 1001–1015, 2011.
  • 13. Gumułka S., Knap T. Strzelczyk P., Szczerba Z., „Wind Power Engineering” (in Polish), Uczelniane Wydawnictwo Naukowo-Dydaktyczne, Krakow 2006, ISBN 83-89388-79-0.
  • 14 . Hankin D., Graham J. M. R., An unsteady vortex lattice methods model of a horizontal axis wind turbine operating in an upstream rotor wake, Journal of Physics: Conference Series 555 (2014).
  • 15. Hantoro R., Utama I.K.A.P., Sulisetyono E., Sulisetyono A., A n E x perimenta l Invest igat ions of Va riable-Pitch Ver t ica l-Axial Ocean Current Turbines, ITB J. Eng. Sci., Vol. 43, No. 1, 2011, 27-40.
  • 16. Javaherchi T., Stelzenmuller N., Aliseda A., Experymental and Numerical Analysis of the Doe Refernce Model 1 Horizontal Axis Hydrokinetic Turbines, Proceedings of the 1st Marine Energy Technology Symposium METS2013, Washington. POLISH MARITIME RESEARCH, No 3/2018122
  • 17. Kaniecki M., Hydrodynamic analysis of propeller pump operation using the surface singularity distribution method (in Polish). Ph.D. thesis, IF-FM PAS, Gdansk 2004.
  • 18. Khan M.J., Bhuyan G., Iqubal M.T., Quaicoe J.E., Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review, Applied Energy 86 1823-1835, 2009.
  • 19. Kirke B., Developments in ducted woter current turbines, Tidal Paper 2006
  • 20. Koh W.X.M., Ng E.Y.K., „Effects of Reynolds number and different tip loss models on the accuracy of BEM applied to tidal turbines as compared to experiments”, Ocean Engineering 111 (2016) 104-115
  • 21. Koyama K., Comparative calculations of Propellers by Surface Panel Method, Ship Research Institute, September 1993.
  • 22. Lewis R. I., Vortex Element Methods for Fluid Dynamic Analysis of Engineering Systems, Cambridge University Press 1991.
  • 23. Liu S., Janajreh I., „Development and application of an improved blade element momentum method model on horizontal axis wind turbines”, International Journal of Energy and Environmental Engineering 2012.
  • 24. Logo L.I., Ponta F.L., Chen L., Advances and trends in hydrokinetic turbine systems, Energy for Sustainable Development 14 (2010) 287-296.
  • 25. McNae D. M., Unstedy Hydrodynamics of Tidal Stream Turbines, Department of Aeronautics Imperial College London, 2013.
  • 26. Pietkiewicz P., Miąskowski W., Nalepa K., Kowalczuk K., Analysing velocity distribution in the wind turbine diffuser (in Polish), Agenda Wydawnicza SIMP, Mechanik, 7/2015, pp. 655-662.
  • 27. Rankine W.J.M., „On The Mechanical Principles of The Action of Propellers”, Trans Inst Naval Architects, Britisch, 1865;6(13).
  • 28. Rohatyński R. Theoretical foundations for modelling flows past solid bodies using the method of singularities (in Polish), Prace Naukowe Instytutu Konstrukcji I Eksploatacji Maszyn Politechniki Wrocławskiej, No. 59, 1993.
  • 29. Rourke F., Boyle F., Reynolds A., Tidal energy update 2009, Applied Energy 87 (2010) 398-409.
  • 30. Shahsavarifard M., Bibeau E.L., Birjandi A.H., Performance gain of horizontal axis hydrokinetic turbines using shroud, MTS 2013.
  • 31. da Silva P. A. S. F., Shinomiya L. D., de Oliveira T. F., Vaz J. R. P., Mesquita A. L. A., Junior A. C. P. B., Design of Hydrokinetic Turbine Blades Considering Cavitation, The 7th International Conference on Applied Energy – ICAE2015, Energy Procedia 75 (2015) 277-282.
  • 32. Xu W., Numerical Techniques for the Design and Prediction of Performance of Marine Turbines and Propellers, Ocean Engineering Group, Report no. 10-06, August 2010

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-21f20fa4-ad87-47ad-8979-a9cea0b0eb6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.