PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 5 |

Tytuł artykułu

Different sensitivities of unicellular and colonial microcystis strains (Cyanophyceae) to six emergent macrophytes

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of six emergent macrophytes (Typha orientalis, Acorus calamus, Oenanthe javanica, Scirpus validus, Sagittaria sagittifolia, and Pontederia cordata) on the growth of two strain Microcystis aeruginosa were studied under co-culture conditions. And the sensitivities of unicellular and colonial Microcystis strains to six emergent macrophytes were compared using an exudation experiment. Based on laboratory experiments, T. orientalis, A. calamus, O. javanica, S. validus, S. sagittifolia, and P. cordata had strong inhibitory effects on growth of unicellular M. aeruginosa, while only A. calamus and P. cordata show obvious growth inhibition on colonial M. aeruginosa. When the biomass density was 20 g FW·L⁻¹, the growth inhibition rate of unicellular M. aeruginosa can exceed 90% for all of the six emergent macrophytes. When macrophytes coexisted with the colonial M. aeruginosa, only A. calamus, P. cordata, and S. sagittifolia showed the growth inhibition of algae. Maximal inhibition of Chl a growth was 75% (p<0.05) for A. calamus, 69% (p<0.05) for P. cordata, and 40% for S. sagittifolia at 45 g FW·L⁻¹ on day 15. The results of the exudation experiment indicated that there were no significant differences between control and treatment of Chl a concentrations of colonial M. aeruginosa for all of the six macrophyte exudations on days 6 and 12. While after 6 d incubation in 100% and 50% macrophyte exudations (40 g FW·L⁻¹), the cell densities of unicellular M. aeruginosa in control were obviously higher than all those in treatment (p < 0.05). The maximal algal growth inhibition (89.62%) of unicellular M. aeruginosa was achieved in 100% exudation of A. calamus on day 6 (p < 0.05). So according to the results of exudation experiments, the unicellular M. aeruginosa was more sensitive than the colonial strain to six emergent macrophytes. And this different sensitivity between Microcystis species probably correlated positively with colony size.

Wydawca

-

Rocznik

Tom

22

Numer

5

Opis fizyczny

p.1539-1546,fig.,ref.

Twórcy

autor
  • Research Institute of Engineering and Technology, Yunnan University, Kunming, 650091, China
autor
  • Hubei Environmental Monitoring Central Station, Wuhan, 430072, China
autor
  • Research Institute of Engineering and Technology, Yunnan University, Kunming, 650091, China
autor
  • Research Institute of Engineering and Technology, Yunnan University, Kunming, 650091, China

Bibliografia

  • 1. ROMANOWSKA-DUDA Z., MANKIEWICA J., TARCZYNSKA M., WALTER Z., ZALEWSKI M. The effect of toxic cyanobacteria (blue-green alga) on water plants and animal cells. Pol. J. Environ. Stud. 11, 561, 2002.
  • 2. AZEVEDO S.M., CARMICHAEL W.W., JOCHIMSEN E.M., RINEHART K.L., LAU S., SHAW G.R., EAGLESHAM G.K. Human intoxication by microcystins during renal dialysis treatment in Caruaru, Brazil. Toxicology 181-182, 441, 2002.
  • 3. CHEN J.Z., LIU Z.L., REN G.J., LI P.F., JIANG Y.W. Control of Microcystis aeruginosa TH01109 with batangas-mandarin skin and dwarf banana peel. Water SA 30, 279, 2004.
  • 4. PAN G., ZHANG M.M., CHEN H., ZOU H., YAN H. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environ. Pollut. 141, 195, 2006.
  • 5. GROSS E.M., HILT S., LOMBARDO P., MULDERIJ G. Searching for allelopathy of submerged macrophytes on phytoplanktond State of the art and open questions. Hydrobiologia. 584, 77, 2007.
  • 6. HILT S., GROSS E.M. Can allelopathically active submerged macrophytes stabilize clear-water states in shallow lakes? Basic. Appl. Ecol. 9, 422, 2008.
  • 7. SCHEFFER M., HOSPER S.H., MEIJER M.L., MOSS B., JEPPESED E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8, 275, 1993.
  • 8. LAURIDSEN T.L., BUENK I. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Arch. Hydrobiol. 137, 161, 1996.
  • 9. MULDERIJ G. Chemical warfare in freshwater – Allelopathic effetcs of macrophytes on phytoplankton. Ph.D. thesis, Netherlands Institute of Ecology, The Netherlands, 2006.
  • 10. HILT S., GHOBRIAL M.G.N., GROSS E.M. In situ allelopathic potential of Myriophyllum verticillatum (haloragaceae) against selected phytoplankton species. J. Phycol. 42, 1189, 2006.
  • 11. ERHARD D., GROSS E.M. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aqua. Bot. 85, 203, 2006.
  • 12. MULDERIJ G., SMOLDERS A.J.P., VAN DONK E. Allelopathic effect of the aquatic macrophyte, Stratiotes aloides, on natural phytoplankton. Freshwater Biol 51, 554, 2006.
  • 13. NAKAI S., INOUE Y., HOSOMI M., MURAKAMI A. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Wat. Sci. Tech. 39, 47, 1999.
  • 14. CHIIANG I.Z., HUANG W.Y., WU J.T. Allelochemicals of Botryococcus braunii (Chlorophyceae). J. Phycol. 40, 474, 2004.
  • 15. XIAN Q., CHEN H., LIU H., ZOU H., YIN D. Isolation and identification of antialgal compounds from the leaves of Vallisneria spiralis L. by activity-guided fractionation. Environ. Sci. Pollut. Res. 13, 233, 2006.
  • 16. MULDERIJ G., MOOIJ W.M., SMOLDERS A.J.P., VON DONK E. Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides. Aqua. Bot. 82, 284, 2005.
  • 17. KÖRNER S., NICKLISH A. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol. 38, 862, 2002.
  • 18. ZHU J., LIU B., WANG J., GAO Y., WU Z. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat. Toxicol. 98, 196, 2010.
  • 19. ZHANG S.H., CHENG S.P., WANG H.Q., HE F., WU Z.B. Allelopathic interactions between the Potamogeton spp and toxic cyanobacteria (Microcystis aeruginosa). Allelopathy J. 23, 379, 2009.
  • 20. KOLMAKOV V.I. Methods for prevention of mass development of the cyanobacterium Microcystis aeruginosa Kutz emend. Elenk. in Aquatic Systems. Microbiology 75, 115, 2006.
  • 21. LI F.M., HU H.Y. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl. Environ. Microb. 71, 6545, 2005.
  • 22. ZHANG W.H., ZHOU L.F., WU X.G. Allelopathic effect of Acorus calamus on Microcystis aeruginosa. China Environ. Sci. 26, (3), 355, 2006.
  • 23. ZHANG T.T., WANG, L.L., HE Z.X., ZHANG D. Growth inhibition and biochemical changes of cyanobacteria induced by emergent macrophyte Thalia dealbata roots. Biochem. Syst. Ecol. 39, 88, 2011.
  • 24. JIN Z.H., ZHUNG Y., DAI S.G., LI T.L. Isolatin and identification of extracts of Eichhornia crassipes and their allelopathic effects on algae. B. Environ. Contam. Tox. 71, 1048, 2003.
  • 25. State Environmental Protection Administration (SEPA) of China. Monitor and analysis method of water and wastewater. Beijing,Chinese Environmental Science Publication House. pp. 246, 2002.
  • 26. MULDERIJ G., VAN DONK E., ROELOFS J.G.M. Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia. 491, 261, 2003.
  • 27. EATON A.D., CLESCERI L.S., RICE E.W., GREENVERG A.E. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC., 2005.
  • 28. KOHL J.G., NICKLISH A. Ecophysiology of algae. Growth and resource use. Academy-verlag, Berlin and Fischer-Verlag, Stuttgart, pp. 253, 1988.
  • 29. PLANAS D., SARHAN F., DUBE L., GODMAIRE H., CADIEUX C. Ecological significance of phenolic compounds of Myriophyllum spicatum. Verh. Internat. Verein. Limnol. 21, 1492, 1981.
  • 30. ZHANG S.H., SUN P.S., GE F.J., WU Z.B. Different sensitivities of Selenastrum capricornutum and toxic strain Microcystis aeruginosa to exudates from two Potamogeton species. Pol. J. Environ. Stud., 20, (1), 1359, 2011.
  • 31. PARK M.H., CHUNG I.M., AHAMAD A., KIM B.H., HWANG S.J. Growth inhibition of unicellular and colonial Microcystis strains (Cyanophyceae) by compounds isolated from rice (Oryza sativa) hulls. Aquat. Bot. 90, 309, 2009.
  • 32. WU Z.X., GAN N.Q., HUANG Q., SONG L.R. Response of Microcystis to copper stress – Do phenotypes of Microcystis make a difference in stress tolerance? Environ. Pollut. 147, 324, 2007.
  • 33. XU T., SONG L.R. Studies on the utility of inorganic carbon in three strains of Microcystis aeruginosa. Acta Hydrobiologica Sinica 31, 125, 2007.
  • 34. SHEN H., SONG L.R. Comparative studies on physiological responses to phosphorus in two phenotypes of bloomforming Microcystis. Hydrobiologia, 592, 475, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-21ef2776-cddb-49ec-a3d2-128c333f47fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.