PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 04 |

Tytuł artykułu

Comparative expression analysis of five WRKY genes from Tibetan hulless barley under various abiotic stresses between drought-resistant and sensitive genotype

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Tibetan hulless barley (Hordeum vulgare subsp. vulgare) is exposed to harsh environmental factors, such as drought, salinity, and cold. To explore useful transcription factor genes that could improve stress resistance of Tibetan hulless barley varieties, five WRKY genes were isolated from drought tolerance Tibetan hulless barley genotype TR1, namely, HvvWRKY2, HvvWRKY5, HvvWRKY10, HvvWRKY19, and HvvWRKY46. The HvvWRKY46 belongs to Group I of the WRKY superfamily, whereas the remaining four belong to Group II. All of them were localized to the nucleus of onion epidermal cells. The respective expression of the five WRKY genes was compared under drought, salt, and cold stress in resistant genotype TR1 and sensitive genotype TS1. Among the five, HvvWRKY2, HvvWRKY5, HvvWRKY19, and HvvWRKY46 were induced by drought or PEG6000 stress in TR1 but not in TS1, suggesting that these four WRKY genes are involved in drought resistance. HvvWRKY2 was induced by salt stress in TR1 but not in TS1, indicating that HvvWRKY2 may be involved in salt resistance. What’s more, HvvWRKY2 were notably upregulated in TR1 under cold stress, whereas it was only induced at low level in TS1, indicating that HvvWRKY2 may also participate in cold tolerance.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

04

Opis fizyczny

p.963-973,fig.,ref.

Twórcy

autor
  • Department of Food Science, Tibet Agricultural and Animal Husbandry College, 860000, Tibet, China
  • State Key Lab for Crop Stress Biology (NWAFU), 712100 Yangling, Shaanxi, China
autor
  • National Key Station for Field Scientific Observation and Experiment, 860000 Nyingchi, Tibet, China
  • Institute of Plateau Ecology, Tibet Agricultural and Animal Husbandry College, 860000 Nyingchi, Tibet, China
autor
  • Department of Food Science, Tibet Agricultural and Animal Husbandry College, 860000, Tibet, China
autor
  • State Key Lab for Crop Stress Biology (NWAFU), 712100 Yangling, Shaanxi, China
autor
  • Tibet Academy of Agricultural and Animal Husbandry Sciences, 850032 Lhasa, Tibet, China

Bibliografia

  • Ali Z, Zhang DY, Xu ZL, Xu L, Yi JX, He XL, Huang YH, Liu XQ, Khan AA, Trethowan RM, Ma HX (2012) Uncovering the salt response of soybean by unraveling its wild and cultivated functional genomes using tag sequencing. PLoS ONE 7(11):e48819
  • Ali-Benali MA, Badawi M, Houde Y, Houde M (2013) Identification of oxidative stress-responsive C₂H₂ zinc fingers associated with Al tolerance in near-isogenic wheat lines. Plant Soil 366(1–2):199–212
  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207
  • Chen LG, Song Y, Li SJ, Zhang LP, Zou CS, Yu DQ (2012) The role of WRKY transcription factors in plant abiotic stresses. BBA Gene Regul Mech 1819:120–128
  • Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L, Chen Z, Beiles A, Chen G, Zhang G (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109(42):16969–16973
  • Du J, Yuan S, Chen Y, Sun X, Zhang Z, Xu F, Yuan M, Shang J, Lin H (2011) Comparative expression analysis of dehydrins between two barley varieties, wild barley and Tibetan hulless barley associated with different stress resistance. Acta Physiol Plant 33(2):567–574
  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206
  • He H, Dong Q, Shao Y, Jiang H, Zhu S, Cheng B, Xiang Y (2012) Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Rep 31(7):1199–1217
  • Jiang Y, Liang G, Yu D (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5(6):1375–1388
  • Lehmann S, Funck D, Szabados L, Rentsch D (2010) Proline metabolism and transport in plant development. Amino Acid 39(2010):949–962
  • Li H, Xu Y, Xiao Y, Zhu Z, Xie X, Zhao H, Wang Y (2010) Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta 232(6):1325–1337
  • Li J, Luan Y, Jin H (2012a) The tomato SlWRKY gene plays an important role in the regulation of defense responses in tobacco. Biochem Biophys Res Commun 427(3):671–676
  • Li YC, Meng FR, Zhang CY, Zhang N, Sun MS, Ren JP, Niu HB, Wang X, Yin J (2012b) Comparative analysis of water stressresponsive transcriptomes in drought-susceptible and -tolerant wheat (Triticum aestivum L.). J Plant Biol 55(5):349–360
  • Lucas S, Durmaz E, Akpınar BA, Budak H (2011) The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiol Biochem 49(3):346–351
  • Mangelsen E, Kilian J, Berendzen KW, Kolukisaoglu UH, Harter K, Jansson C, Wanke D (2008) Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics 9:194
  • Niu C, Wei W, Zhou Q, Tian A, Hao Y, Zhang W, Ma B, Lin Q, Zhang Z, Zhang J, Chen S (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35(6):1156–1170
  • Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Lida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J 34(6):868–887
  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150(4):1648–1655
  • Qian G, Han Z, Zhao T, Deng G, Pan Z, Yu M (2007) Genotypic variability in sequence and expression of HVA1 gene in Tibetan hulless barley, Hordeum vulgare ssp. vulgare, associated with resistance to water deficit. Aust J Agr Res 58(5):425–431
  • Qian G, Liu Y, Ao D, Yang F, Yu M (2008) Differential expression of dehydrin genes in hull-less barley (Hordeum vulgare ssp. vulgare) depending on duration of dehydration stress. Can J Plant Sci 88(5):899–906
  • Rabara RC, Tripathi P, Lin J, Rushton PJ (2013) Dehydration-induced WRKY genes from tobacco and soybean respond to jasmonic acid treatments in BY-2 cell culture. Biochem Biophys Res Commun 431(3):409–414
  • Rahaie M, Xue GP, Naghavi MR, Alizadeh H, Schenk PM (2010) A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes. Plant Cell Rep 29(8):835–844
  • Rushton PJ, Somssich IE, Ringler P, Shen QXJ (2010) WRKY transcription factors. Trends Plant Sci 15(5):247–258
  • Sahin-Cevik M (2012) A WRKY transcription factor gene isolated from Poncirus trifoliata shows differential responses to cold and drought stresses. Plant Omics 5(5):438–445
  • Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, Wang X (2012) OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol 80(3):241–253
  • Sun CX, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugarresponsive elements of the ISO1 promoter. Plant Cell 15(9):2076–2092
  • Sun CX, Hoglund AS, Olsson H, Mangelsen E, Jansson C (2005) Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling. Plant J 44(1):128–138
  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7(5):491–498
  • Wang F, Hou X, Tang J, Wang Z, Wang S, Jiang F, Li Y (2012) A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Mol Biol Rep 39(4):4553–4564
  • Wu XL, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28(1):21–30
  • Wu D, Qiu L, Xu L, Ye L, Chen M, Sun D, Chen Z, Zhang H, Jin X, Dai F, Zhang G (2011) Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS ONE 6(7):e22938
  • Xiong X, James VA, Zhang HN, Altpeter F (2010) Constitutive expression of the barley HvWRKY38 transcription factor enhances drought tolerance in turf and forage grass (Paspalum notatum Flugge). Mol Breed 25(3):419–432
  • Yang R, Deng C, Ouyang B, Ye Z (2011) Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep 38(2):857–863
  • Yu F, Huaxia Y, Lu W, Wu C, Cao X, Guo X (2012) GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biol 12:144
  • Zhang Q, Zhu J, Ni Y, Cai Y, Zhang Z (2012) Expression profiling of HbWRKY1, an ethephon-induced WRKY gene in latex from Hevea brasiliensis in responding to wounding and drought. Trees Struct Funct 26(2):587–595

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-21bd3510-2f2e-4206-8c98-53f7354d069d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.