PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 3 |

Tytuł artykułu

Chaperone DnaJ influences the formation of biofilm by Escherichia coli

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
DnaJ chaperone, a member of the so called DnaK-DnaJ-GrpE chaperone machine plays an important role in cell physiology. The ability of Escherichia coli ∆dnaJ mutant to form biofilm was studied. It was shown that this mutant is impaired in biofilm development when exposed to 42°C for 2 h. The impairment in biofilm development was observed when the heat shock was applied either at the onset of biofilm formation or 2 h later. The biofilm formed was thinner and its structure was changed as compared to wild-type strain. This defect could be complemented by the introduction of a wild-type gene on a low-copy plasmid.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

3

Opis fizyczny

p.279-283,fig.,ref.

Twórcy

  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
autor
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland

Bibliografia

  • Beloin C., A. Roux and J.-M. Ghigo. 2008. Escherichia coli biofilms. Curr. Topics Microbiol. Immunol. 322: 249–289.
  • Casadaban M. and S.S. Cohen. 1980. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Molec. Biol. 138: 179–207.
  • Castanié-Cornet M.P., N. Bruel and P. Genevaux. 2014. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim. Biophys. Acta 1843: 1442–1456.
  • Cuéllar J., J. Perales-Calvo, A. Muga, J. M. Valpuesta and F. Moro. 2013. Structural insights into the chaperone activity of the 40-kDa heat shock protein DnaJ: binding and remodeling of a native substrate. J. Biol. Chem. 288: 15065–15074.
  • de la Fuente-Núňnez C., F. Reffeuville, L. Fernández and R.E. Hancock. 2013. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 16: 580–589.
  • Donlan R.M. and J.W. Costerton. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15: 167–193.
  • Dubern J.F., E.L. Lagendijk, B.J. Lugtenberg and G.V. Bloemberg. 2005. The heat shock genes dnaK, dnaJ and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida PCL1445. J. Bacteriol 187: 5967–5976.
  • Flemming H.-C. and J. Wingender. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8: 623–633.
  • Genevaux P., C. Georgeopoulos and W.L. Kelly. 2007. The Hsp70 chaperone machines in Escherichia coli; a paradigm for the repartition of chaperone functions. Mol. Microbiol. 66: 840–857.
  • Hall M.P., M.G. Gruber, R.R. Hannah, M.L. Jennes-Clough and K.V. Wood. 1998. Stabilization of firefly luciferase using directed evolution. pp. 392–395. In: Roda A., M. Pazzagli, L.J. Kricka and P.E. Stanley (eds). Bioluminescence and Chemiluminescence, Perspectives for the 21st Century. John Wiley & Sons, New York.
  • Hoiby N., T. Bjarnsholt, M. Givskov, S. Molin and O. Ciofu. 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35: 322–332.
  • Karatan E. and P. Watnick. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev. 73: 310–347.
  • Lemos J.A., Y. Luzardo and R.A. Burne. 2007. Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutants. J. Bacteriol. 189: 1582–1588.
  • Lippolis J.D., B.W. Brunelle, T.A. Reinhardt, R.E. Sacco, B.J. Nonnecke, B. Dogan, K. Simpson and Y.H. Schukken. 2014. Proteomic analysis reveals protein expression diffrences in Escherichia coli strains associated with persistent versus transient mastitis. J. Proteomics 108: 373–381.
  • Lundin A. and A. Thore. 1975. Analytical information obtained by evaluation of the time course of firefly bioluminescence in the assay of ATP. Anal. Biochem. 66: 47–63.
  • Mayhew M. and F.U. Hartl. 1996. Molecular chaperone proteins, pp. 217–261. In: Neidhard N.C., R. Curtiss III, J.L. Ingraham, E.C.C.
  • Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter and H.E. Umbarger (eds). Escherichia coli and Salmonella, Cellular and Molecular Biology. ASM Press, Washington, D.C.
  • McCarthy J. and G.C. Walker. 1994. DnaK mutants defective in ATPase activity are defective in negative regulation of the heat shock response: expression of the mutant DnaK proteins results in filamentation. J. Bacteriol. 76: 764–780.
  • McFarlane S. and J.F. Dillon. 2007. Microbial biofilms in the human gastrointestinal tract. J. Appl. Microbiol. 192: 1187–1196.
  • O’Toole G.A. and R. Kotler. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways; a genetic analysis. Mol. Microbiol. 28: 449–461.
  • Paciorek J., K. Kardyś, B. Łobacz and K.I. Wolska. 1997. Escherichia coli defects caused by null mutations in dnaK and dnaJ genes. Acta Microbiol. Polon. 46: 7–17.
  • Raczkowska A., S. Karolina, M. Brzóstkowska, A. Łasińska and K. Brzostek. 2011. Pleiotropic effects of a Yersinia enterocolitica ompR mutation on adherent-invasive abilities and biofilm formation. FEMS Microbiol. Lett. 321: 43–49.
  • Sieńczyk J., A. Skłodowska, A. Grudniak and K.I. Wolska. 2004. Influence of DnaK and DnaJ chaperones on Escherichia coli membrane lipid composition. Pol. J. Microbiol. 53: 121–123.
  • Singh V.K., M. Syring, A. Singh, K. Singhal, A. Dalecki and T. Johansson. 2012. An insight into the significance of DnaK heat shock system in Staphylococcus aureus. Int. J. Med. Microbiol. 302: 242–252.
  • Srinivasan S.R., A.T. Gilles, L. Chang, A.D. Thompson and J.E. Gestwicki. 2012. Molecular chaperones DnaK and DnaJ share predicted binding sites on most proteins in the E. coli proteome. Mol. Biosyst. 8: 2323–2333.
  • van der Veen S. and T. Abee. 2010. HrcA and DnaK are important for static and continuous-flow biofilm formation and disinfectant resistance in Listeria monocytogenes. Microbiology 156: 3782–3790.
  • Verstraeten N., K. Braeken, B. Debkumari, M. Fauvarat, J. Fransaer, J. Vermant and J. Michiels. 2008. Living on a surface: swarming and biofilm formation. Trends Microbiol. 16: 496–506.
  • Walsh P., D. Bursać, Y.C. Law, D. Cyr and T. Lithgow. 2004. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 5: 567–571.
  • Wolska K.I., E. Bugajska, D. Jurkiewicz, M. Kuć and A. Jóźwik. 2000. Antibiotic susceptibility of Escherichia coli dnaK and dnaJ mutants. Microb. Drug Res. 6: 119–126.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-21951821-fe88-4649-a24a-14740e249c3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.