PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 29 | 1 |

Tytuł artykułu

Proline accumulation and real time PCR expression analysis of genes encoding enzymes of proline metabolism in relation to drought tolerance in Andean potato

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Six potato varieties belonging to four different sub-species were submitted to drought stress during tuberization under controlled field conditions, resulting in contrasting responses of the genotypes to water stress with yield losses varying between 27 and 75%. In all clones free proline accumulated under drought, however, proline levels increased earlier in drought-susceptible varieties than in more tolerant ones. The expression of two key genes in proline metabolism, Δ¹ -pyrroline-5-carboxylate synthase and proline dehydrogenase, was monitored in the leaves of the experimental plants by r2eal time PCR 23 and 42 days after drought onset. Expression of both enzymes did not correlate with the proline levels found in leaf tissue indicating that mechanisms other than transcription participate in the regulation of proline accumulation in potato leaves.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

29

Numer

1

Opis fizyczny

p.19-26,fig.,ref.

Twórcy

  • International Potato Center, Avenida La Molina 1895, Apartado 1558, La Molina, Lima 12, Peru
autor
  • International Potato Center, Avenida La Molina 1895, Apartado 1558, La Molina, Lima 12, Peru
  • International Potato Center, Avenida La Molina 1895, Apartado 1558, La Molina, Lima 12, Peru
  • International Potato Center, Avenida La Molina 1895, Apartado 1558, La Molina, Lima 12, Peru
  • International Potato Center, Avenida La Molina 1895, Apartado 1558, La Molina, Lima 12, Peru

Bibliografia

  • Balasimha D (1983) Proline accumulation in water stressed potatoes. J Indian Potato Assoc 10(1–2):56–59
  • Bansal KC, Nagarajan S (1986) Leaf water content, stomatal conductance and proline accumulation in leaves of Potato (Solanum tuberosum L.) in response to water stress. Indian J Plant Physiol 29:397–404
  • Bates LS, Waldren RP, Teare ED (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207
  • Delauney AJ, Hu CA, Kavi Kishor PB, Verma DPS (1993) Cloning of ornithin delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem 268:18673–18678
  • Do HT, Jacobs M, Angenon G, Hermans C, Tran TT, Le SV, Roosens NH (2003) Proline accumulation and Δ¹-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Sci 165:1059–1068
  • Heuer B, Nadler A (1998) Physiological response of potato plants to soil salinity and water deficit. Plant Sci 137:43–51
  • Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K (1997) Characterization of the gene for delta-1-pyrroline-carboxylate synthase and correlation between the expression of the gene and SALT tolerance in Oryza sativa. Plant Mol Biol 33:857–865
  • Jerez E, Torres J, Dell’Amico J, Morales D (1991) Indicadores fisioló gicos y bioquimicos en el cultivo de la papa en respuesta al estrés hídrico. Cultivos Tropicales 12:21–26
  • Jerez E, Torres W, Reynaldo I (1993) Indicadores fisioló gicos y bioquimicos en cultivares de papa sometidos a estrés de humedad por periodos cortos de tiempo. Cultivos Tropicales 14:71–78
  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci 88 (3):424–438
  • Kavi Kishor PB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of Δ¹-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394
  • Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic stress, and cold stress. Plant Physiol 57:169–173
  • Levy D (1983) Water deficit enhancement of proline and alpha-amino-nitrogen accumulation in potato plants and its association with susceptibility to drought. Physiol Plant 57:169–173
  • Martinez CA, Guerrero C, Moreno U (1995) Diurnal fluctuations of carbon exchange rate, proline content, and osmotic potential in two water-stressed potato hybrids. R Bras Fisiol Veg 7:27–33
  • Molinari HBC, Marur CJ, Bespalhok Filho JC, Kobayashi AK, Pileggi M, Leite Júnior RP, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381
  • Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but also developmentally regulated in the reproductive organs of Arabidposis. Plant Physiol 118:1233–1241
  • Nayyar H (2003) Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environ Exp Bot 50:253–264
  • Pfaffl MW, Horgan GW, Dempfle L (2002) Expression Software Tool (REST©) for group wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:36
  • Phutela A, Jain V, Dhawan K, Nainawatee HS (2000) Proline metabolism under water stress in the leaves and roots of Brassica juncea cultivars differing in drought tolerance. J Plant Biochem Biotechnol 9:35–39
  • Phutela A, Jain V, Dhawan K, Nainawatee HS (2003) Proline metabolism and growth of Brassica juncea seedlings under water deficit stress. Indian J Agric Biochem 16:29–32
  • Ramanjulu S, Sudhakar C (2000) Proline metabolism during dehydration in two mulberry genotypes with contrasting drought tolerance. J Plant Physiol 157:81–85
  • Rhodes D, Handa S, Bresnan RA (1986) Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol 138:554–558
  • Rizhsky L, Liang H, Suman J, Shuhalev V, Datetova R, Mittler S (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696
  • De Ronde JA, Strasser RJ, van Staden J (2001) Interaction of osmotic and temperature stress on transgenic soyabean. S Afr J Bot 67(4):655–660
  • De Ronde JA, Cress WA, Krüger GHJ, Strasser RJ, van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161(11):1211–1224
  • Singh TN, Aspinall D, Paleg LG (1972) Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nat New Biol 236:188–190
  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948
  • Van der Mescht A, de Ronde JA, Van der Merwe T, Rossouw FT (1998) Changes in free proline concentrations and polyamine levels in Potato leaves during drought stress. S Afr J Sci 94:347–391
  • Van Rensburg L., Krueger GHJ, Krueger H (1993) Proline accumulation as drought tolerance selection criterion: Its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. J Plant Physiol 141:188–194
  • Voetberg GS, Sharp RE (1991) Growth of the maize primary root at low water potentials. III. Role of increased proline authentication and osmotic adjustment. Plant Physiol 96:1125–1130
  • Weller SA, Elphinstone JG, Smith NC, Boonham N, Stead DE (2000) Detection of Ralstonia solanacearum Strains with a Quantitative, Multiplex, Real-Time, Fluorogenic PCR (Taq-Man) Assay. Appl Environ Microbiol 66:2853–2858
  • Yoshiba Y., Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38(10):1095–1102
  • Zhu B, Su J, Chang M, Verma DPS, Fan YL, Wu R (1998) Overexpression of a Δ¹-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci 139:41–48
  • Zhu XY, Jing Y, Chen GC, Wang SM, Zhang CL (2003) Solute levels and osmoregulatory enzyme activities in reed plants adapted to drought and saline habitats. Plant Growth Regul 41(2):165–17

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-217cf9a5-4af2-487b-a4e9-76dc67e49d00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.